In order to find out how the climatic characteristics affect people's adaptability to thermal environments,experimental studies in a climate chamber are conducted on the effects of transition seasons(from spring to ...In order to find out how the climatic characteristics affect people's adaptability to thermal environments,experimental studies in a climate chamber are conducted on the effects of transition seasons(from spring to summer)and the occupants' native areas on indoor thermal sensations.Results reveal that people's tolerances to cool and warm indoor environments are different in the transition season.When the outdoor temperature is higher,the occupants have a weaker tolerance to a cool indoor environment,but a stronger tolerance to a warm indoor environment.Besides,it is found that the occupants' thermal sensations depend on both the climatic characteristics of the season and their native areas.The people from southern China present a greater tolerance to both warm and cool indoor environments than those from northern China.The reason can be explained according to the occupants' adaptability to the climatic characteristics and the indoor thermal environments of their native areas in different climate zones.展开更多
Thermal tolerance to high temperature was evaluated in the large yellow croaker Larimichthys crocea. The survival thermal maximum for L. crocea was 33.0℃, the 50% critical thermal maximum (50% CTMax) was 35.5℃, an...Thermal tolerance to high temperature was evaluated in the large yellow croaker Larimichthys crocea. The survival thermal maximum for L. crocea was 33.0℃, the 50% critical thermal maximum (50% CTMax) was 35.5℃, and the critical thermal maximum (CTMax) was 36.0℃. Three microsatellite markers (LYC0148, LYC0200 and LYC0435), associated with thermal tolerance were screened and identified using a Bulked Segregation Analysis (BSA) method. These markers have six amplified fragments in which four are related to thermal tolerance. These fragments were cloned and sequenced, and the results showed the core motif were all "AC" repeats. For LYC0148 and LYC0200, the lengths of fragments are 18l bp and 197 bp, respectively. For LYC0435, which has two fragments, the fragment lengths are 112 bp and 100 bp. The results provide useful molecular markers for thermal-tolerance breeding of large yellow croaker in the near future.展开更多
We reported data on thermal preference, thermal tolerance and the thermal dependence of digestive performance for two Phrynocephalus lizards (P. frontalis and P. versicolor), and compared data among lizards so far s...We reported data on thermal preference, thermal tolerance and the thermal dependence of digestive performance for two Phrynocephalus lizards (P. frontalis and P. versicolor), and compared data among lizards so far studied worldwide. Mean values for selected body temperature (Tsel) and critical thermal maximum (CTMax) were greater in P versicolor, whereas mean values for critical thermal minimum (CTMin) did not differ between the two species. The two lizards differed in food intake, but not in food passage time, apparent digestive coefficient (ADC) and assimilation efficiency (AE), across the experimental tem- peratures. Four general conclusions can be drawn from published data. Firstly, thermal preference and thermal tolerance differ among lizards differing in distribution, temporal activity pattern and habitat use. Lizards in thermally more variable regions are better able to tolerate low and high temperatures. Diurnal lizards generally select higher body temperatures than nocturnal lizards, and lizards using habitats with direct sun exposure generally selected higher body temperatures and are better able to tolerate high temperatures. Secondly, CTMax is positively correlated with Tsel. Lizards more likely exposed to extremely high temperatures while active select higher body temperatures than those using shaded habitats. Thirdly, the effects of body temperature on food intake, food passage time, ADC and AE differ among lizards, but it seems to be common among lizards that ADC and AE are less thermally sensitive than food intake and food passage time. Lastly, ADC is dependent on the type of food ingested, with insectivorous lizards digesting food more efficiently than herbivorous lizards展开更多
基金The Major Project of the National Natural Science Foundation of China(No.50838003)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAJ02A06)
文摘In order to find out how the climatic characteristics affect people's adaptability to thermal environments,experimental studies in a climate chamber are conducted on the effects of transition seasons(from spring to summer)and the occupants' native areas on indoor thermal sensations.Results reveal that people's tolerances to cool and warm indoor environments are different in the transition season.When the outdoor temperature is higher,the occupants have a weaker tolerance to a cool indoor environment,but a stronger tolerance to a warm indoor environment.Besides,it is found that the occupants' thermal sensations depend on both the climatic characteristics of the season and their native areas.The people from southern China present a greater tolerance to both warm and cool indoor environments than those from northern China.The reason can be explained according to the occupants' adaptability to the climatic characteristics and the indoor thermal environments of their native areas in different climate zones.
基金Supported by the National Natural Science Foundation of China(No.31172397)the New Century Excellent Talents of Fujian University(Nos.JA14167,C18013)
文摘Thermal tolerance to high temperature was evaluated in the large yellow croaker Larimichthys crocea. The survival thermal maximum for L. crocea was 33.0℃, the 50% critical thermal maximum (50% CTMax) was 35.5℃, and the critical thermal maximum (CTMax) was 36.0℃. Three microsatellite markers (LYC0148, LYC0200 and LYC0435), associated with thermal tolerance were screened and identified using a Bulked Segregation Analysis (BSA) method. These markers have six amplified fragments in which four are related to thermal tolerance. These fragments were cloned and sequenced, and the results showed the core motif were all "AC" repeats. For LYC0148 and LYC0200, the lengths of fragments are 18l bp and 197 bp, respectively. For LYC0435, which has two fragments, the fragment lengths are 112 bp and 100 bp. The results provide useful molecular markers for thermal-tolerance breeding of large yellow croaker in the near future.
文摘We reported data on thermal preference, thermal tolerance and the thermal dependence of digestive performance for two Phrynocephalus lizards (P. frontalis and P. versicolor), and compared data among lizards so far studied worldwide. Mean values for selected body temperature (Tsel) and critical thermal maximum (CTMax) were greater in P versicolor, whereas mean values for critical thermal minimum (CTMin) did not differ between the two species. The two lizards differed in food intake, but not in food passage time, apparent digestive coefficient (ADC) and assimilation efficiency (AE), across the experimental tem- peratures. Four general conclusions can be drawn from published data. Firstly, thermal preference and thermal tolerance differ among lizards differing in distribution, temporal activity pattern and habitat use. Lizards in thermally more variable regions are better able to tolerate low and high temperatures. Diurnal lizards generally select higher body temperatures than nocturnal lizards, and lizards using habitats with direct sun exposure generally selected higher body temperatures and are better able to tolerate high temperatures. Secondly, CTMax is positively correlated with Tsel. Lizards more likely exposed to extremely high temperatures while active select higher body temperatures than those using shaded habitats. Thirdly, the effects of body temperature on food intake, food passage time, ADC and AE differ among lizards, but it seems to be common among lizards that ADC and AE are less thermally sensitive than food intake and food passage time. Lastly, ADC is dependent on the type of food ingested, with insectivorous lizards digesting food more efficiently than herbivorous lizards