期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
中华鳖新孵幼体的热耐受性、体温昼夜变化和运动能力的热依赖性 被引量:11
1
作者 孙平跃 徐晓寅 +1 位作者 陈慧丽 计翔 《应用生态学报》 CAS CSCD 2002年第9期1161-1165,共5页
研究中华鳖新孵幼体的热耐受性、体温及温度对运动能力的影响 .结果表明 ,在干燥和潮湿环境下 ,选择体温分别为 2 8.0℃和 30 .3℃ ;潮湿环境下 ,临界高温和低温分别为 40 .9℃和 7.8℃ .在缺乏温度梯度的热环境中 ,水温对幼鳖体温的影... 研究中华鳖新孵幼体的热耐受性、体温及温度对运动能力的影响 .结果表明 ,在干燥和潮湿环境下 ,选择体温分别为 2 8.0℃和 30 .3℃ ;潮湿环境下 ,临界高温和低温分别为 40 .9℃和 7.8℃ .在缺乏温度梯度的热环境中 ,水温对幼鳖体温的影响比气温更直接 ,体温和环境温度的昼夜变化相一致 ,说明幼鳖生理调温能力很弱 .在有温度梯度的热环境中 ,幼鳖能通过行为调温将体温维持到较高且较恒定的水平 ,导致体温昼夜变化不明显 .幼鳖运动能力有显著的热依赖性 ,在一定温度范围内随体温升高而增强 .体温31.5℃时 ,幼鳖的运动表现最好 ,最大续跑距离、单位时间跑动距离和单位时间停顿次数分别为 1.87m、4 92m·min-1和 6 .2次·min-1.体温过高时 ,运动能力下降 .当体温为 33 .0℃时 ,最大续跑距离、单位时间跑动距离和单位时间停顿次数分别为 1.30m、4.2 8m·min-1和 7.7次·min-1. 展开更多
关键词 中华鳖 新孵幼体 耐热受性 体温昼夜变化 运动能力 热依赖
下载PDF
Experimental study on the effects of climatic characteristics on people's adaptability to thermal environment 被引量:1
2
作者 余娟 朱颖心 +1 位作者 欧阳沁 曹彬 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期279-282,共4页
In order to find out how the climatic characteristics affect people's adaptability to thermal environments,experimental studies in a climate chamber are conducted on the effects of transition seasons(from spring to ... In order to find out how the climatic characteristics affect people's adaptability to thermal environments,experimental studies in a climate chamber are conducted on the effects of transition seasons(from spring to summer)and the occupants' native areas on indoor thermal sensations.Results reveal that people's tolerances to cool and warm indoor environments are different in the transition season.When the outdoor temperature is higher,the occupants have a weaker tolerance to a cool indoor environment,but a stronger tolerance to a warm indoor environment.Besides,it is found that the occupants' thermal sensations depend on both the climatic characteristics of the season and their native areas.The people from southern China present a greater tolerance to both warm and cool indoor environments than those from northern China.The reason can be explained according to the occupants' adaptability to the climatic characteristics and the indoor thermal environments of their native areas in different climate zones. 展开更多
关键词 climatic characteristics ADAPTABILITY thermal sensation TOLERANCE
下载PDF
Thermal tolerance evaluation and related microsatellite marker screening and identification in the large yellow croaker Larimichthys crocea 被引量:2
3
作者 陈小明 李佳凯 +2 位作者 王志勇 蔡明夷 刘贤德 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第3期566-571,共6页
Thermal tolerance to high temperature was evaluated in the large yellow croaker Larimichthys crocea. The survival thermal maximum for L. crocea was 33.0℃, the 50% critical thermal maximum (50% CTMax) was 35.5℃, an... Thermal tolerance to high temperature was evaluated in the large yellow croaker Larimichthys crocea. The survival thermal maximum for L. crocea was 33.0℃, the 50% critical thermal maximum (50% CTMax) was 35.5℃, and the critical thermal maximum (CTMax) was 36.0℃. Three microsatellite markers (LYC0148, LYC0200 and LYC0435), associated with thermal tolerance were screened and identified using a Bulked Segregation Analysis (BSA) method. These markers have six amplified fragments in which four are related to thermal tolerance. These fragments were cloned and sequenced, and the results showed the core motif were all "AC" repeats. For LYC0148 and LYC0200, the lengths of fragments are 18l bp and 197 bp, respectively. For LYC0435, which has two fragments, the fragment lengths are 112 bp and 100 bp. The results provide useful molecular markers for thermal-tolerance breeding of large yellow croaker in the near future. 展开更多
关键词 large yellow croaker thermal tolerance microsatellite markers
下载PDF
Thermal preference, thermal tolerance and the thermal dependence of digestive performance in two Phrynocephalus lizards (Agamidae), with a review of species studied 被引量:7
4
作者 Yanfu QU Hong LI +2 位作者 Jianfang GAO Xuefeng XU Xiang JI 《Current Zoology》 SCIE CAS CSCD 北大核心 2011年第6期684-700,共17页
We reported data on thermal preference, thermal tolerance and the thermal dependence of digestive performance for two Phrynocephalus lizards (P. frontalis and P. versicolor), and compared data among lizards so far s... We reported data on thermal preference, thermal tolerance and the thermal dependence of digestive performance for two Phrynocephalus lizards (P. frontalis and P. versicolor), and compared data among lizards so far studied worldwide. Mean values for selected body temperature (Tsel) and critical thermal maximum (CTMax) were greater in P versicolor, whereas mean values for critical thermal minimum (CTMin) did not differ between the two species. The two lizards differed in food intake, but not in food passage time, apparent digestive coefficient (ADC) and assimilation efficiency (AE), across the experimental tem- peratures. Four general conclusions can be drawn from published data. Firstly, thermal preference and thermal tolerance differ among lizards differing in distribution, temporal activity pattern and habitat use. Lizards in thermally more variable regions are better able to tolerate low and high temperatures. Diurnal lizards generally select higher body temperatures than nocturnal lizards, and lizards using habitats with direct sun exposure generally selected higher body temperatures and are better able to tolerate high temperatures. Secondly, CTMax is positively correlated with Tsel. Lizards more likely exposed to extremely high temperatures while active select higher body temperatures than those using shaded habitats. Thirdly, the effects of body temperature on food intake, food passage time, ADC and AE differ among lizards, but it seems to be common among lizards that ADC and AE are less thermally sensitive than food intake and food passage time. Lastly, ADC is dependent on the type of food ingested, with insectivorous lizards digesting food more efficiently than herbivorous lizards 展开更多
关键词 LIZARDS Selected body temperature Critical thermal limits Food intake Food passage time Apparent digestivecoefficient Assimilation efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部