在确定特高压变电站内并联电容器组的接线方式时,耐爆能量是一个非常重要的参数。针对特高压变电站110 k V并联电容器常用的单星形双桥差接线方式,推导出该接线方式下的电容器组故障分析模型,并对桥臂采用不同串并联方式时的故障电容器...在确定特高压变电站内并联电容器组的接线方式时,耐爆能量是一个非常重要的参数。针对特高压变电站110 k V并联电容器常用的单星形双桥差接线方式,推导出该接线方式下的电容器组故障分析模型,并对桥臂采用不同串并联方式时的故障电容器进行耐爆能量验证计算,得出最优的桥臂接线方案。展开更多
耐爆能量是电容器的一项重要的安全性能指标,它表示电容器在极间短路时,外部电路(包括电容器自身的储能)注入故障点而不使其外壳发生爆裂的能量的限值,即是对电容器外壳强度的一个安全要求。通过几种常见的同容量不同接线和布置方式下...耐爆能量是电容器的一项重要的安全性能指标,它表示电容器在极间短路时,外部电路(包括电容器自身的储能)注入故障点而不使其外壳发生爆裂的能量的限值,即是对电容器外壳强度的一个安全要求。通过几种常见的同容量不同接线和布置方式下的耐爆能量来对比分析说明通过合理的接线和布置可防止装置产生的最大耐爆能量大于15 k J,避免发生重大事故。展开更多
为保证煤粉燃料在粉仓内的安全、可靠存储并解决煤粉工业锅炉系统粉仓设计不完善问题,需提高泄压防爆装置设计的可行性。采用泄压面积计算及仓体抗爆安全设计,并结合实例对用于动力煤煤粉燃料的储仓防爆安全设计提出具体要求和建议,以...为保证煤粉燃料在粉仓内的安全、可靠存储并解决煤粉工业锅炉系统粉仓设计不完善问题,需提高泄压防爆装置设计的可行性。采用泄压面积计算及仓体抗爆安全设计,并结合实例对用于动力煤煤粉燃料的储仓防爆安全设计提出具体要求和建议,以达到规范化及标准化之目的。参照国内外相关规范并分析研究煤粉储仓的防爆设计方法可知,其关键之处为泄压防爆面积设计计算,若当1000 m 3煤粉储仓的仓体设计耐压强度为0.2 MPa时,计算所需的泄压面积为4.56 m 2,远小于非耐压仓体所需的泄压面积108.6 m 2。研究表明,实时填充CO 2或N 2的惰化保护仓以及设计耐压强度大于最大爆炸压力时全抗爆仓的安全性最高,但其存在实施困难与经济性差的问题,工程实践中宜采用耐压泄爆仓设计以保证设备安全,推荐仓体设计的耐压强度为(0.2~0.4)MPa;根据GB 12476《可燃性粉尘环境用电气设备》中对可燃性粉尘环境防爆区域划分及释放源的定义,对煤粉储仓的防爆区域划分提出了相应建议。展开更多
文摘耐爆能量是电容器的一项重要的安全性能指标,它表示电容器在极间短路时,外部电路(包括电容器自身的储能)注入故障点而不使其外壳发生爆裂的能量的限值,即是对电容器外壳强度的一个安全要求。通过几种常见的同容量不同接线和布置方式下的耐爆能量来对比分析说明通过合理的接线和布置可防止装置产生的最大耐爆能量大于15 k J,避免发生重大事故。
文摘为保证煤粉燃料在粉仓内的安全、可靠存储并解决煤粉工业锅炉系统粉仓设计不完善问题,需提高泄压防爆装置设计的可行性。采用泄压面积计算及仓体抗爆安全设计,并结合实例对用于动力煤煤粉燃料的储仓防爆安全设计提出具体要求和建议,以达到规范化及标准化之目的。参照国内外相关规范并分析研究煤粉储仓的防爆设计方法可知,其关键之处为泄压防爆面积设计计算,若当1000 m 3煤粉储仓的仓体设计耐压强度为0.2 MPa时,计算所需的泄压面积为4.56 m 2,远小于非耐压仓体所需的泄压面积108.6 m 2。研究表明,实时填充CO 2或N 2的惰化保护仓以及设计耐压强度大于最大爆炸压力时全抗爆仓的安全性最高,但其存在实施困难与经济性差的问题,工程实践中宜采用耐压泄爆仓设计以保证设备安全,推荐仓体设计的耐压强度为(0.2~0.4)MPa;根据GB 12476《可燃性粉尘环境用电气设备》中对可燃性粉尘环境防爆区域划分及释放源的定义,对煤粉储仓的防爆区域划分提出了相应建议。