The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-...The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.展开更多
Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating ...Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating formation and corrosion resistance. For the PEO in S1 electrolyte, a mixed layer of AlPO4and Al2O3is formed at the initial stage, which leads to fast plasma discharges and formation of black coatings with the compositions of Al2O3,CuO, Cu2O and ZnO. However, in S2 electrolyte, plasma discharges are delayed and the coatings show a reddish color due to more Cu2O. Mott-Schottky tests show that the S1 coatings are p-type semiconductors;while the S2 coatings can be adjusted between n-type and p-type. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests show that the PEO treatment can significantly improve the corrosion resistance of brass, with protection efficiency up to 91.50% and the largest charge transfer resistance of 59.95 kΩ·cm^(2) for the S1 coating.展开更多
基金Project(51478164)supported by the National Natural Science Foundation of ChinaProject(BK20181306)supported by Natural Science Foundation of Jiangsu Province,China。
文摘The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.
基金supported by the National Natural Science Foundation of China (No. 51671084)the Postgraduate Scientific Research Innovation Project of Hunan Province, China (No. QL20210092)。
文摘Plasma electrolytic oxidation(PEO) of brass was carried out in aluminate electrolytes with the addition of NaH2PO4(S1) and Na2SiO3(S2), respectively, with the aim to investigate the effect of additives on the coating formation and corrosion resistance. For the PEO in S1 electrolyte, a mixed layer of AlPO4and Al2O3is formed at the initial stage, which leads to fast plasma discharges and formation of black coatings with the compositions of Al2O3,CuO, Cu2O and ZnO. However, in S2 electrolyte, plasma discharges are delayed and the coatings show a reddish color due to more Cu2O. Mott-Schottky tests show that the S1 coatings are p-type semiconductors;while the S2 coatings can be adjusted between n-type and p-type. Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests show that the PEO treatment can significantly improve the corrosion resistance of brass, with protection efficiency up to 91.50% and the largest charge transfer resistance of 59.95 kΩ·cm^(2) for the S1 coating.