Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid...Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process.展开更多
Vacuum thermal diffusion technique was applied to preparing alloying coating on AZ31 B magnesium alloy. The microstructure and phase composition of the coatings prepared at different holding time were investigated in ...Vacuum thermal diffusion technique was applied to preparing alloying coating on AZ31 B magnesium alloy. The microstructure and phase composition of the coatings prepared at different holding time were investigated in detail using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectrometer(EDS) and X-ray diffraction(XRD), and so on. The microhardness tester and electrochemical workstation(PS-168a) were used to measure the microhardness and corrosion resistance of the alloying coating. The results showed that the alloying coatings gradually generated with the extension of holding time under constant temperature. And the obvious bonding interface between the coating and substrate was observed, and the bonding interface was changed from smooth to zigzag. EDS and XRD analyses showed that the microstructure of alloying coating mainly consisted of eutectic α-Mg phase and continuous network β-Al(12)Mg(17) phase. The average microhardness of the coatings increased by 113% in comparison to the substrate, and the self-corrosion potential increased from-1.389 to-1.268 V at the same time.展开更多
The plasma electrolytic oxidation(PEO) coatings on zircaloy?4 alloy were prepared in silicate,phosphate and pyrophosphate electrolyte systems or their combination by DC current regime.The proper processing paramete...The plasma electrolytic oxidation(PEO) coatings on zircaloy?4 alloy were prepared in silicate,phosphate and pyrophosphate electrolyte systems or their combination by DC current regime.The proper processing parameters were determined and the coatings were evaluated by electrochemistry technique,micro-hardness,SEM and XRD.The results show that the coating prepared in pure silicate system is uneven and after the addition of phosphate solution,the homogeneity of the coating is still poor.The coating prepared in pure pyrophosphate electrolyte system is homogeneous,but its hardness value is low.After the addition of silicate into the pyrophosphate electrolytic system,both the uniformity and hardness of the coating are improved.The XRD results show that the phase compositions are m-ZrO2 and t-ZrO2,the addition of silicate is beneficial to the formation of t-ZrO2.The results of polarization curves show that the coatings prepared in pyrophosphate and the mixture of pyrophosphate and silicate have better corrosion resistance.展开更多
The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heat...The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heated at 1 000 ℃ in vacuum oven of 1 kPa for 5 h. The properties of coatings were investigated. The results indicate that Fe2B appears after milling for 15 h in the powder at room temperature, a part of ternary borides (Mo2FeB2) are generated in powder sintered at 900 ℃. The coatings are composed of the major phases Mo2FeB2 and a-Fe, a little of Fe203, FeO and some pores. The bonding strength between the substrate and the ceramic coating is 32.73 MPa, the thermal-shock times is about 43 and the wear resistance is enhanced by approximately 5.28 times compared with that of the substrate, respectively. The comprehensive properties of Mo2FeB2 cermet coatings can be imoroved further after vacuum heat-treatment at 1 000 ℃ for 5 h.展开更多
In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder wa...In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.展开更多
The thermal expansion behavior, microhardness and electrochemical corrosion resistance of Au52Cu27Ag17-x(NiZn0.5)x (x=0,6 and 12) alloys were investigated by dilatometer (DIL), microhardness tester, electrochemi...The thermal expansion behavior, microhardness and electrochemical corrosion resistance of Au52Cu27Ag17-x(NiZn0.5)x (x=0,6 and 12) alloys were investigated by dilatometer (DIL), microhardness tester, electrochemical workstation, X-ray diffractometer(XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).With increasing x, the relative length expansion and DIL maximum temperature Tl m (i.e., thermal stability) of the alloys increase inthermal expansion measurements, which can be explained by the change of the atomic binding energy, mismatch entropy togetherwith phase transformation. With the increase of x, the microhardness can be improved, but the corrosion resistance decreases; inaddition, the anodic peak current densities of polarization curves decrease, which are related closely with the solid solution degreeand dissolution of Ag, Ni and Zn alloying elements in Cl^- -containing solution.展开更多
Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyz...Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS).The results show that the clad layer mainly consists ofα-Mg,Mg2Si dendrites,Mg17Al12and Al3Mg2phases.Owing to the formation of Mg2Si,Mg17Al12and Al3Mg2intermetallic compounds in the melted region and grain refinement,the microhardness of the clad layer(HV0.025310)is about5times higher than that of the substrate(HV0.02554).Besides,corrosion tests in the NaCl(3.5%,mass fraction)water solution show that the corrosion potential is increased from-1574.6mV for the untreated sample to-128.7mV for the laser-clad sample,while the corrosion current density is reduced from170.1to6.7μA/cm2.These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.展开更多
Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their...Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting(LSM).The topography,microhardness,corrosion resistance and wear resistance of the laser melted surfaces were studied.Overall surface integrity after LSM was compared with as-cast surface.LSM enhanced the microhardness and wear resistance of the surface in each case.Porosity of the laser melted surface was low and corrosion resistance was high.Thus,LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites.However,there is an optimum laser specific energy,around 38 J/m^2 in this study,for obtaining the best surface integrity.展开更多
The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in W...The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.展开更多
Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples...Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance.展开更多
The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compare...The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.展开更多
For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that c...For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that co-electrodeposition in a bath with stirring rate of250r/min results in the maximum co-electrodeposited particle content and the best particle distribution.To produce NCZ graded Ni-NCZ composite coating,the stirring rate was continuously increased from0to250r/min.The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate towards the surface.The results showed that with increasing the co-electrodeposited NCZ particles content in Ni matrix,microhardness increases from interface towards the surface of the coating.Little crystallite size of Ni matrix and higher co-electrodeposited hard particles content were recognized as the reasons of microhardness increasing.Bend test revealed that the functionally graded composite coating shows more excellent adhesion to the substrate compared with the ordinary distributed Ni-NCZ on the same substrate.This result is attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.The results of wear resistance measurements reveal that wear resistance of functionally graded Ni-NCZ is higher than that of ordinary distributed composite coating.展开更多
Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency...Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.展开更多
Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the...Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.展开更多
The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness...The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.展开更多
(CrFeCoNi)high-entropy alloy(HEA)was reinforced with various contents of WC particles from 5 wt%to 20 wt%,and prepared by powder metallurgy.The mixed powders were compacted under 700 MPa and then sintered at 1200℃in ...(CrFeCoNi)high-entropy alloy(HEA)was reinforced with various contents of WC particles from 5 wt%to 20 wt%,and prepared by powder metallurgy.The mixed powders were compacted under 700 MPa and then sintered at 1200℃in a vacuum furnace for 90 min.Density,phase composition,and microstructure of sintered samples were investigated.Hardness,compressive strength,wear resistance and coefficient of thermal expansion(CTE)were estimated.The results revealed the improvement of the density with the addition of WC.XRD results revealed the formation of new FCC chromium carbide phases.Scanning electron microscopy(SEM)results show a good distribution of the carbide phases over the alloy matrix.The CTE was decreased gradually by increasing the WC content.Compressive strength was improved by WC addition.A mathematical model was established to predict the behavior of the strength of the HEA samples.The hardness of the investigated HEAs was increased gradually with the increasing of WC content about 20.35%.Also,the wear rate of HEA without WC is 1.70×10^(−4)mm^(3)/(N·m),which is approximately 4.5 times the wear rate of 20 wt%WC HEA(3.81×10^(−5)mm^(3)/(N·m)),which means that wear resistance was significantly improved with the increase of WC content.展开更多
Abstract: In order to improve the surface hardness and wear resistance of magnesium, Al-13%Si (mass fraction) alloy coating was deposited on pure magnesium by droplet spraying process. The microstructure was studie...Abstract: In order to improve the surface hardness and wear resistance of magnesium, Al-13%Si (mass fraction) alloy coating was deposited on pure magnesium by droplet spraying process. The microstructure was studied by electron probe microanalysis and X-ray diffraction. The micro-hardness and wear resistance of coating were investigated in comparison with those of the substrate. It is found that the coating layer is composed of a-Al cellular due to rapid solidification. Formation mechanism of the coating is due to the obstruction of diffusion by in-situ formed Mg2Si in interracial layer. The coating exhibits higher hardness compared to that of the Mg substrate. As result of its high hardness, the wear resistance of the coating layer is about ten times that of the substrate. The droplet spraying process demonstrates that the magnesium surface can be strengthened by using the existing Al-Si alloys.展开更多
The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed...The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.展开更多
Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were ...Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C 110 steel was subjected to liquid nitriding at 430 ℃, the nitrided layer was almost composed of a thin e-Fe2-3N layer. When C 110 steel was subjected to liquid nitriding at 640 ℃, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 ℃, the nitrided layer of the C110 steel was mainly composed by e-Fe2 3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 ℃, especially at 680 ℃, the sample's surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.展开更多
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(2014-024)supported by Shanxi Scholarship Council of China
文摘Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process.
基金Project(2015GY167)supported by the Science and Technology Department of Shaanxi Province,ChinaProject(2014cxy-05-1)supported by the Science and Technology Bureau of Yulin,China
文摘Vacuum thermal diffusion technique was applied to preparing alloying coating on AZ31 B magnesium alloy. The microstructure and phase composition of the coatings prepared at different holding time were investigated in detail using optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectrometer(EDS) and X-ray diffraction(XRD), and so on. The microhardness tester and electrochemical workstation(PS-168a) were used to measure the microhardness and corrosion resistance of the alloying coating. The results showed that the alloying coatings gradually generated with the extension of holding time under constant temperature. And the obvious bonding interface between the coating and substrate was observed, and the bonding interface was changed from smooth to zigzag. EDS and XRD analyses showed that the microstructure of alloying coating mainly consisted of eutectic α-Mg phase and continuous network β-Al(12)Mg(17) phase. The average microhardness of the coatings increased by 113% in comparison to the substrate, and the self-corrosion potential increased from-1.389 to-1.268 V at the same time.
基金Project (51071066) supported by by the National Natural Science Foundation of ChinaProject (531107040029) supported by the Fundamental Research Fund for the Central Universities,ChinaProject supported by the Development of Youth Teachers of Hunan University,China
文摘The plasma electrolytic oxidation(PEO) coatings on zircaloy?4 alloy were prepared in silicate,phosphate and pyrophosphate electrolyte systems or their combination by DC current regime.The proper processing parameters were determined and the coatings were evaluated by electrochemistry technique,micro-hardness,SEM and XRD.The results show that the coating prepared in pure silicate system is uneven and after the addition of phosphate solution,the homogeneity of the coating is still poor.The coating prepared in pure pyrophosphate electrolyte system is homogeneous,but its hardness value is low.After the addition of silicate into the pyrophosphate electrolytic system,both the uniformity and hardness of the coating are improved.The XRD results show that the phase compositions are m-ZrO2 and t-ZrO2,the addition of silicate is beneficial to the formation of t-ZrO2.The results of polarization curves show that the coatings prepared in pyrophosphate and the mixture of pyrophosphate and silicate have better corrosion resistance.
基金Project(2007T069)supported by Liaoning Education Department Innovation Team,China
文摘The powders of Mo2FeB2 cermet were prepared with Mo powders, Fe-B alloy powders and Fe powders as raw materials. Mo2FeB2 cermet coatings were prepared on Q235 steel by reactive thermal spraying (RTS) method and heated at 1 000 ℃ in vacuum oven of 1 kPa for 5 h. The properties of coatings were investigated. The results indicate that Fe2B appears after milling for 15 h in the powder at room temperature, a part of ternary borides (Mo2FeB2) are generated in powder sintered at 900 ℃. The coatings are composed of the major phases Mo2FeB2 and a-Fe, a little of Fe203, FeO and some pores. The bonding strength between the substrate and the ceramic coating is 32.73 MPa, the thermal-shock times is about 43 and the wear resistance is enhanced by approximately 5.28 times compared with that of the substrate, respectively. The comprehensive properties of Mo2FeB2 cermet coatings can be imoroved further after vacuum heat-treatment at 1 000 ℃ for 5 h.
基金Key Research and Development Project of Shanxi Province(No.201603D121002-2)
文摘In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.
基金Projects(51171091,51471099,51571132)supported by the National Natural Science Foundation of ChinaProject(2012CB825702)supported by the National Basic Research Program of China
文摘The thermal expansion behavior, microhardness and electrochemical corrosion resistance of Au52Cu27Ag17-x(NiZn0.5)x (x=0,6 and 12) alloys were investigated by dilatometer (DIL), microhardness tester, electrochemical workstation, X-ray diffractometer(XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).With increasing x, the relative length expansion and DIL maximum temperature Tl m (i.e., thermal stability) of the alloys increase inthermal expansion measurements, which can be explained by the change of the atomic binding energy, mismatch entropy togetherwith phase transformation. With the increase of x, the microhardness can be improved, but the corrosion resistance decreases; inaddition, the anodic peak current densities of polarization curves decrease, which are related closely with the solid solution degreeand dissolution of Ag, Ni and Zn alloying elements in Cl^- -containing solution.
基金Project(2016YBF0701205) supported by the National Key Research and Development Program of ChinaProjects(51271121,51471109) supported by the National Natural Science Foundation of ChinaProject(13KY0501) supported by Shanghai University of Engineering Science Innovation Fund for Graduate Students,China
文摘Laser surface cladding with Al-Si powders was applied to a Mg-6Zn-1Ca magnesium alloy to improve its surface properties.The microstructure,phase components and chemical compositions of the laser-clad layer were analyzed by using X-ray diffractometry(XRD),scanning electron microscopy(SEM)and energy dispersive spectrometry(EDS).The results show that the clad layer mainly consists ofα-Mg,Mg2Si dendrites,Mg17Al12and Al3Mg2phases.Owing to the formation of Mg2Si,Mg17Al12and Al3Mg2intermetallic compounds in the melted region and grain refinement,the microhardness of the clad layer(HV0.025310)is about5times higher than that of the substrate(HV0.02554).Besides,corrosion tests in the NaCl(3.5%,mass fraction)water solution show that the corrosion potential is increased from-1574.6mV for the untreated sample to-128.7mV for the laser-clad sample,while the corrosion current density is reduced from170.1to6.7μA/cm2.These results reveal that improved corrosion resistance and increased hardness of the Mg-6Zn-1Ca alloy can be both achieved after laser cladding with Al-Si powders.
文摘Two types of composites were prepared with Al-4.5Cu alloy as a matrix using stir casting method.One was reinforced with 10wt.%of Si C and 2wt.%of MoS2.The other was reinforced with 10wt.%of Si C and 4wt.%of MoS2.Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting(LSM).The topography,microhardness,corrosion resistance and wear resistance of the laser melted surfaces were studied.Overall surface integrity after LSM was compared with as-cast surface.LSM enhanced the microhardness and wear resistance of the surface in each case.Porosity of the laser melted surface was low and corrosion resistance was high.Thus,LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites.However,there is an optimum laser specific energy,around 38 J/m^2 in this study,for obtaining the best surface integrity.
文摘The Ni/FA composite plating was realized by electrodeposition with fly ash (FA) as inert particles. The main compositions of FA are 72% SiO2 and 25% A1203 in the size of 3-7 Ixm. Electrodeposition was performed in Watts bath containing FA with concentrations of 5, 20, 50 g/L, current densities of 2 and 4 A/dm2, temperature of 50 ~C and magnetic stirring of 250 r/min. Scanning electron microscope (SEM+EDX), electrochemical and mechanical technique were used to study morphology, composition and properties of coating. FA content in deposit is dependent on the FA concentration in solution, as well as the plating parameters. Since FA particles were incorporated in the coating, the mechanical and electrochemical properties of the coating were increased. The microhardness of Ni/FA composite plating reaches HV 430 in comparison with HV 198 of pure Ni coating. It was confirmed by electrochemical measurement that the corrosion resistance of Ni/FA composite coating was higher than that of pure Ni.
文摘Friction stir extrusion(FSE)is known as an innovative manufacturing technology that makes it possible to directly produce wire via consolidation and extrusion of metal chips or solid billets.In this study,wire samples were produced using aluminum alloy AA7022 machining chips by the use of the FSE.To this end,the microstructures and mechanical properties of the base material(BM)and the extruded samples were investigated.The corrosion resistance of the given samples was also determined using potentiodynamic polarization technique.The results showed that the samples manufactured at higher rotational speeds possessed good surface quality,the process temperature and the grain size similarly increased following the rise in rotational speed,and the mechanical properties consequently decreased.Using the FSE led to crystallite refinement,increase in volume fraction of grain boundaries,as well as re-distribution of precipitates affecting corrosion resistance.Furthermore,the findings of the corrosion tests revealed that the produced samples by the FSE had adequate corrosion resistance and the growth in die rotation rate augmented current density and subsequently reduced corrosion resistance.
文摘The influences of SiC content on the microstructure, porosity, hardness and wear resistance of A356?SiCp composites processed via two different methods of compocasting and vibrating cooling slope (VCS) were compared with each other. In the as-cast condition, the matrix of VCS and compocast processed composites exhibited globular and dendritric structures, respectively. While a more uniform distribution of SiC particulates in the matrix alloy as well as higher hardness values were obtained for the VCS processed samples, the composites produced via compocasting exhibited less porosity. The increased SiC content (up to 20% in volume fraction) resulted in a more uniform distribution of SiC particles within the matrix alloy and improved wear resistance for both the composite series. However, for the VCS processed composites, the increased SiC content, resulted in the decreased size and shape factor of globules as well as better tribological properties when compared with compocast composites. It was concluded that the improved properties of the VCS processed composites when compared with their compocast counterparts was a consequence of a more uniform distribution of SiC particulates in the matrix alloy as well as the globular microstructure generated during the VCS process.
文摘For the first time,functionally electroless nickel plated ZrO2(NCZ)graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate.Studies showed that co-electrodeposition in a bath with stirring rate of250r/min results in the maximum co-electrodeposited particle content and the best particle distribution.To produce NCZ graded Ni-NCZ composite coating,the stirring rate was continuously increased from0to250r/min.The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate towards the surface.The results showed that with increasing the co-electrodeposited NCZ particles content in Ni matrix,microhardness increases from interface towards the surface of the coating.Little crystallite size of Ni matrix and higher co-electrodeposited hard particles content were recognized as the reasons of microhardness increasing.Bend test revealed that the functionally graded composite coating shows more excellent adhesion to the substrate compared with the ordinary distributed Ni-NCZ on the same substrate.This result is attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.The results of wear resistance measurements reveal that wear resistance of functionally graded Ni-NCZ is higher than that of ordinary distributed composite coating.
基金UGC, New Delhi, India, for the award of Post-Doctoral Fellowship to K.O.Nayana(Award No: F.15-1/2015-16/PDFWM-2015-17KAR-31527(SA-Ⅱ))
文摘Ni?Co3O4 composite coatings were electrodeposited on mild steel surface from a Watts-type bath in the presence of sodium lauryl sulfate(SLS).The dispersed Co3O4 particles in the presence of SLS have a greater tendency to move towards cathode and get incorporated in the coating.SLS modifies chemical composition,surface morphology and microstructure of the Ni?Co3O4 composite coating.The developed composite coating exhibits higher corrosion resistance and microhardness than the pure nickel coating.The loadings of bath solution with different concentrations of Co3O4 particles in the presence of SLS provide hydrophobic nature to the coating surface,which is much effective in enhancing the corrosion resistance of Ni?Co3O4 composite coating.The agglomeration of Co3O4 particles(>3 g/L)under high bath load condition develops defects and dislocation on the coating surface,which results in lower corrosion resistance of the deposit.The mechanical properties of the hydrophobic coatings were assessed by the linear abrasion test.
基金the Youth Foundation of China University of Mining & Technology (No.2009A056)the Tribology Science Fund from State Key Laboratory of Tribology at Tsinghua University (No.SKLTKF08A01)+1 种基金the National Natural Science Foundation of China (Nos.50905180 and 51005234)the National Science and Technology Pillar Program in the Eleventh Five-Year Plan Period (No.2008BAB36B02)
文摘Reliability and wear resistance of cutting picks play a significant role in coal mine exploitation with coal shearers.Tool bit separation,blade breaking,severe erosion of the cutting body and fatigue fractures are the main reasons for failure of cutting picks.We carried out carburization on a 30CrMnMo alloy to synthesize a new cutting pick material with improved mechanical properties and high wear resistance.The results indicated that carburization can effectively strengthen the surface of the 30CrMnMo alloy by forming a thick carburized layer and thus significantly improve the surface hardness and wear resistance.In addition,the excellent toughness of 30CrMnMo alloy as a substrate of cutting picks can prevent brittle ruptures and fatigue fractures under high impact stress conditions.The significant decrease in both frictional coefficient and rate of erosion of this carburized 30CrMnMo alloy suggests that this alloy is a potential material for cutting picks of coal shearers after rational carburization.
文摘The effect of diamond-like carbon(DLC)coating(fabricated by cathodic arc deposition)on mechanical properties,tribological behavior and corrosion performance of the Ni−Al−bronze(NAB)alloy was investigated.Nano-hardness and pin-on-plate test showed that DLC coating had a greater hardness compared with NAB alloy.Besides,the decrease in friction coefficient from 0.2 for NAB substrate to 0.13 for the DLC-coated sample was observed.Potentiodynamic polarization and EIS results showed that the corrosion current density decreased from 2.5μA/cm2 for bare NAB alloy to 0.14μA/cm2 for DLC-coated sample in 3.5 wt.%NaCl solution.Moreover,the charge transfer resistance at the substrate−electrolyte interface increased from 3.3 kΩ·cm2 for NAB alloy to 120.8 kΩ·cm2 for DLC-coated alloy,which indicated an increase in corrosion resistance due to the DLC coating.
文摘(CrFeCoNi)high-entropy alloy(HEA)was reinforced with various contents of WC particles from 5 wt%to 20 wt%,and prepared by powder metallurgy.The mixed powders were compacted under 700 MPa and then sintered at 1200℃in a vacuum furnace for 90 min.Density,phase composition,and microstructure of sintered samples were investigated.Hardness,compressive strength,wear resistance and coefficient of thermal expansion(CTE)were estimated.The results revealed the improvement of the density with the addition of WC.XRD results revealed the formation of new FCC chromium carbide phases.Scanning electron microscopy(SEM)results show a good distribution of the carbide phases over the alloy matrix.The CTE was decreased gradually by increasing the WC content.Compressive strength was improved by WC addition.A mathematical model was established to predict the behavior of the strength of the HEA samples.The hardness of the investigated HEAs was increased gradually with the increasing of WC content about 20.35%.Also,the wear rate of HEA without WC is 1.70×10^(−4)mm^(3)/(N·m),which is approximately 4.5 times the wear rate of 20 wt%WC HEA(3.81×10^(−5)mm^(3)/(N·m)),which means that wear resistance was significantly improved with the increase of WC content.
基金Project(KZJ-48)supported by the Science and Technology Development Program of Qingdao,ChinaProject(51208288)supported by the National Natural Science Foundation of ChinaProject(BS2011CL032)supported by the Research Award Fund for Outstanding Youngand Middle-aged Scientists of Shandong Province,China
文摘Abstract: In order to improve the surface hardness and wear resistance of magnesium, Al-13%Si (mass fraction) alloy coating was deposited on pure magnesium by droplet spraying process. The microstructure was studied by electron probe microanalysis and X-ray diffraction. The micro-hardness and wear resistance of coating were investigated in comparison with those of the substrate. It is found that the coating layer is composed of a-Al cellular due to rapid solidification. Formation mechanism of the coating is due to the obstruction of diffusion by in-situ formed Mg2Si in interracial layer. The coating exhibits higher hardness compared to that of the Mg substrate. As result of its high hardness, the wear resistance of the coating layer is about ten times that of the substrate. The droplet spraying process demonstrates that the magnesium surface can be strengthened by using the existing Al-Si alloys.
基金Sponsored by the Fund for the Doctoral Program of Higher Education (RFDP) (Grant No. CBQQ24403007)the Innovation Fund of HIT(Grant No.CBQQ18400018)
文摘The surface performance of workpieces processed by electrical discharge machining in gas(dry EDM)was studied in this paper.Firstly,the composition,micro hardness and recast layer of electrical discharge machined(EDMed)surface of 45 carbon steels in air were investigated through different test analysis methods.The results show that the workpiece surface EDMed in air contains a certain quantity of oxide,and oxidation occurs on the workpiece surface.Compared with the surface of workpieces processed in kerosene,fewer cracks exist on the dry EDMed workpiece surface,and the surface recast layer is thinner than that obtained by conventional EDM.The micro hardness of workpieces machined by dry EDM method is lower than that machined in kerosene,and higher than that of the matrix.In addition,experiments were conducted on the surface wear resistance of workpieces processed in air and kerosene using copper electrode and titanium alloy electrode.The results indicate that the surface wear resistance of workpieces processed in air can be improved,and it is related with tool material and dielectric.
基金Projects(51471112,51611130204)supported by the National Natural Science Foundation of China
文摘Liquid nitriding of Cll0 steel was conducted in a wide range of temperatures (400-670 ℃) using a kind of chemical heat-treatments, and the hardness, mechanical and corrosion properties of the nitrided surface were evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly depended on the processing condition. When C 110 steel was subjected to liquid nitriding at 430 ℃, the nitrided layer was almost composed of a thin e-Fe2-3N layer. When C 110 steel was subjected to liquid nitriding at 640 ℃, the phase composition of the nitrided layer was greatly changed. The nitrided layer depth increased significantly with increasing the treating temperature. The liquid nitriding effectively improved the surface hardness. After liquid nitriding, the absorption energy of the treated sample decreased and the tensile strength increased by Charpy V-notch (CVN) test. But the elongation of treated sample decreased. The reason is that the nitrided layer of sample is hardened and there is brittlement by diffusion of nitrogen atom. Despite of treatment temperature, the liquid nitriding can improve the corrosion. After being nitrided at 430 ℃, the nitrided layer of the C110 steel was mainly composed by e-Fe2 3N, which has excellent corrosion resistance and high microhardness, the nitrided sample has the best corrosion resistance. After nitriding temperature over 580 ℃, especially at 680 ℃, the sample's surface was covered by the thick oxide layer, which has very low hardness and corrosion resistance. So, the corrosion resistance of samples is severely compromised.