In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack...In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.展开更多
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa...The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.展开更多
A pin-on-disk tribometer was used, in a comparative test to observe the tribological behavior of the swine femoral bone against UHMWPE with dry friction, physiological water and human plasma lubrication. The wear mech...A pin-on-disk tribometer was used, in a comparative test to observe the tribological behavior of the swine femoral bone against UHMWPE with dry friction, physiological water and human plasma lubrication. The wear mechanisms of swine bones and UHMWPE were investigated by SEM. The experimental results of these wear tests demon- strated that both the friction coefficient and wear rate of UHMWPE were the lowest when human plasma lubrication was used. The wear mechanism of the compact bone was mainly fatigue wear with dry friction, corrosive wear under physiological water lubrication and abrasive wear with human plasma lubrication. For UHMWPE, the wear mecha- nism was adhesive wear and plastic deformation with dry friction, serious ploughing and fatigue fracture wear under physiological water lubrication, fine ploughing and plastic deformation with human plasma lubrication. An analysis of nitrogen elements on the wear surface of UHMWPE indicated that the content of nitrogen in worn areas was 16 times higher than that in unworn areas, which proved that serum protein deposition occurred on worn areas.展开更多
A series of wear and flame resistant polyamide 6(PA6)composites were prepared using glass fiber(GF)and talc(T)as reinforcer,polytetrafluoroethylene(PTFE)and graphite(Gr)as solid lubricants,red phosphorus(RP)and zinc b...A series of wear and flame resistant polyamide 6(PA6)composites were prepared using glass fiber(GF)and talc(T)as reinforcer,polytetrafluoroethylene(PTFE)and graphite(Gr)as solid lubricants,red phosphorus(RP)and zinc borate(ZB)as flame retardant.The tribological property,mechanical property,flame retardant property and the flame retardant mechanism were investigated.The tests show that the formula of the wear resistant PA6 composite(WRPA 6)is PA6/GF/T/PTFE/Gr in the ratio of 100/15/5/10/5 by mass.Because this composite exhibits the lowest friction coefficient(0.1429)and no wear mass loss,the introduction of RP and ZB can increase the flame resistance of WRPA6,and the synergistic effect of RP and ZB is obtained.Detailedly,the composite with 4 parts of ZB and 12 parts of RP shows the best flame retardant property,achieving the highest limiting oxygen index(LOI)(30.2 vol%)and a UL94 V-0 rating,and the flame retardant mechanisms may be gas phase along with condense phase mechanism.展开更多
基金Projects(YKJ201203,CKJB201205)supported by the Nanjing Institute of Technology,China
文摘In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.
文摘The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.
基金Projects BK2005019 supported by the Natural Science Foundation of Jiangsu Province of China and 2005B032the Scientific Research Foundation ofChina University of Mining & Technology
文摘A pin-on-disk tribometer was used, in a comparative test to observe the tribological behavior of the swine femoral bone against UHMWPE with dry friction, physiological water and human plasma lubrication. The wear mechanisms of swine bones and UHMWPE were investigated by SEM. The experimental results of these wear tests demon- strated that both the friction coefficient and wear rate of UHMWPE were the lowest when human plasma lubrication was used. The wear mechanism of the compact bone was mainly fatigue wear with dry friction, corrosive wear under physiological water lubrication and abrasive wear with human plasma lubrication. For UHMWPE, the wear mecha- nism was adhesive wear and plastic deformation with dry friction, serious ploughing and fatigue fracture wear under physiological water lubrication, fine ploughing and plastic deformation with human plasma lubrication. An analysis of nitrogen elements on the wear surface of UHMWPE indicated that the content of nitrogen in worn areas was 16 times higher than that in unworn areas, which proved that serum protein deposition occurred on worn areas.
基金Project(149929)supported by the Postdoctoral Fund of Central South University,ChinaProject(16C0292)supported by the Hunan Education Department,ChinaProject(2016TP1022)supported by the Hunan Provincial Key Lab of Dark Tea and Jin-hua,China
文摘A series of wear and flame resistant polyamide 6(PA6)composites were prepared using glass fiber(GF)and talc(T)as reinforcer,polytetrafluoroethylene(PTFE)and graphite(Gr)as solid lubricants,red phosphorus(RP)and zinc borate(ZB)as flame retardant.The tribological property,mechanical property,flame retardant property and the flame retardant mechanism were investigated.The tests show that the formula of the wear resistant PA6 composite(WRPA 6)is PA6/GF/T/PTFE/Gr in the ratio of 100/15/5/10/5 by mass.Because this composite exhibits the lowest friction coefficient(0.1429)and no wear mass loss,the introduction of RP and ZB can increase the flame resistance of WRPA6,and the synergistic effect of RP and ZB is obtained.Detailedly,the composite with 4 parts of ZB and 12 parts of RP shows the best flame retardant property,achieving the highest limiting oxygen index(LOI)(30.2 vol%)and a UL94 V-0 rating,and the flame retardant mechanisms may be gas phase along with condense phase mechanism.