Boronizing was applied to Inconel 718. In order to obtain the optimal combination of strength and ductility, the borided Inconel 718 was subjected to standard heat treatment. This consists of solution treatment and th...Boronizing was applied to Inconel 718. In order to obtain the optimal combination of strength and ductility, the borided Inconel 718 was subjected to standard heat treatment. This consists of solution treatment and then a two-step aging treatment. The borided layer is composed of the compound layer and the boron diffusion zone. Because of the superior hardness of borides, the borided Inconel 718 exhibits a significant reduction in its wear rate and relatively low coefficient of friction (COF) compared with the unborided Inconel 718. The standard heat treatment efficiently promotes the diffusion of boron into the interior of the material and the generation of new borides (Fe2B, CrB). The borided layer with standard heat treatment shows much better wear resistance due to the thicker borided layer (313.76 μm).展开更多
The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties...The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.展开更多
TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear r...TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.展开更多
In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder wa...In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.展开更多
The effect of the addition of graphite nanoparticles into the electrolyte used to produce plasma electrolytic oxidation(PEO) coatings on AZ91 and AZ80 magnesium alloys was studied. The corrosion and wear resistances...The effect of the addition of graphite nanoparticles into the electrolyte used to produce plasma electrolytic oxidation(PEO) coatings on AZ91 and AZ80 magnesium alloys was studied. The corrosion and wear resistances of the obtained coatings were investigated. A solution that contained both phosphates and silicates was used as electrolyte. Moreover, two different PEO treatment times were studied. The corrosion resistance was analyzed with potentiodynamic polarization and EIS tests; the wear resistance was investigated with a flat on ring tribometer. The results were related to the morphology, microstructure, elemental composition and thickness evaluated with SEM analysis. The presence of the graphite nanoparticles increased the thickness, produced a densification of the coating and sealed the pores on the surface, thus improving both the corrosion and wear resistance. The increase in the corrosion and wear resistances was more evident for AZ91 than for AZ80 due to the higher aluminum content.展开更多
基金Projects(2011CB013402,201303002,2014028002)supported by the National Basic Research Program of China
文摘Boronizing was applied to Inconel 718. In order to obtain the optimal combination of strength and ductility, the borided Inconel 718 was subjected to standard heat treatment. This consists of solution treatment and then a two-step aging treatment. The borided layer is composed of the compound layer and the boron diffusion zone. Because of the superior hardness of borides, the borided Inconel 718 exhibits a significant reduction in its wear rate and relatively low coefficient of friction (COF) compared with the unborided Inconel 718. The standard heat treatment efficiently promotes the diffusion of boron into the interior of the material and the generation of new borides (Fe2B, CrB). The borided layer with standard heat treatment shows much better wear resistance due to the thicker borided layer (313.76 μm).
基金Project(11005151)supported by the Young Scientists Fund of the National Natural Science Foundation of ChinaProject(YETP1297)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(BEIJ2014110003)supported by the Undergraduate Research and Innovative Undertaking Program of Beijing,China
文摘The microarc oxidation(MAO) coatings produced at different current frequencies on AZ91 D magnesium alloys were studied systematically. The morphologies, thickness, corrosion performances, and tribological properties of the coatings were investigated by the scanning electron microscopy, the electrochemical measurement system, and MS-T3000 friction test rig, respectively. The results show that the structure of the coatings becomes denser, and thickness becomes thinner with the increase of the current frequency. It is also found that the corrosion resistance of the coatings produced at higher frequency is improved greatly and the difference of the corrosion current density becomes small with increasing current frequency, which is similar to that of the coating thickness. The tribological test shows that the friction coefficient decreases with increasing the current frequency and the wear resistance of the coatings is influenced by both the thickness and structures. All these results were explained by analyzing the growing process of the MAO coating.
基金Project(KFJJ10-15M) supported by the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,ChinaProject(E2013208101) supported by the Nature Science Fund of Hebei Province,China+1 种基金Project(Z2012100) supported by Colleges and Universities Science and Technology Research Fund of Hebei Province,ChinaProject supported by the Outstanding Youth Fund of Hebei University of Science and Technology,China
文摘TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.
基金Key Research and Development Project of Shanxi Province(No.201603D121002-2)
文摘In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment.
文摘The effect of the addition of graphite nanoparticles into the electrolyte used to produce plasma electrolytic oxidation(PEO) coatings on AZ91 and AZ80 magnesium alloys was studied. The corrosion and wear resistances of the obtained coatings were investigated. A solution that contained both phosphates and silicates was used as electrolyte. Moreover, two different PEO treatment times were studied. The corrosion resistance was analyzed with potentiodynamic polarization and EIS tests; the wear resistance was investigated with a flat on ring tribometer. The results were related to the morphology, microstructure, elemental composition and thickness evaluated with SEM analysis. The presence of the graphite nanoparticles increased the thickness, produced a densification of the coating and sealed the pores on the surface, thus improving both the corrosion and wear resistance. The increase in the corrosion and wear resistances was more evident for AZ91 than for AZ80 due to the higher aluminum content.