Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content an...Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll dining desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited with loss of water similar to those of general plants, however, the magic thing is that they could reactivate rapidly during rehydration even losing more than 95% water. Up-regulations in xanthophyll cycle and antioxidative systems as well as preservation in integrity and stability of photosynthetic membranes during desiccation may be very important to desiccation tolerance of resurrection angiosperms. The fact that phosphate treatment in rehydration stage also strongly influences resurrection indicated importance of studies on rehydration stages of resurrection angiosperms.展开更多
Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage stra...Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage strategy of seeds and long-term conservation of species gene resources. In addition to the inherent characteristics of the species, developmental status of the seeds, dehydration rate, and the conditions under which they are dried and subsequently re-imbibed are very important factors influencing desiccation tolerance of seeds. Survival, electrolyte leakage rate, and germination/growth rate produced by survived seeds are a excellent synthetic parameter when discussing desiccation tolerance of seeds. Desiccation tolerance of seeds is a quantitative feature. The term 'critical water content' is incorrect and has caused some confusion in assessment of seed recalcitrance. A new working approach to quantify the degree of seed recalcitrance has been proposed in this paper.展开更多
文摘Resurrection plants which are able to quickly reactivate after falling into a period of anabiosis caused by dehydration have been very rare among angiosperms, especially among dicotyledons whose chlorophyll content and chloroplast structure little changed in the course of desiccation, therefore has been called homoiochlorophyllous desiccation-tolerant plants (HDTs). Another type of resurrection angiosperms that lost its chlorophyll dining desiccation is called poikilochlorophyllous desiccation-tolerant plants (PDTs). HDTs have been received more attention because of simplicity of protection mechanism which is much easy to the study and utilization of the desiccation tolerance of resurrection angiosperms. Recent advances in studies of photosynthesis of resurrection angiosperms indicate that photochemical activities are sensitive indicators for the study of physiological state of resurrection angiosperms during desiccation and rehydration. Photochemical activities of resurrection angiosperms are inhibited with loss of water similar to those of general plants, however, the magic thing is that they could reactivate rapidly during rehydration even losing more than 95% water. Up-regulations in xanthophyll cycle and antioxidative systems as well as preservation in integrity and stability of photosynthetic membranes during desiccation may be very important to desiccation tolerance of resurrection angiosperms. The fact that phosphate treatment in rehydration stage also strongly influences resurrection indicated importance of studies on rehydration stages of resurrection angiosperms.
文摘Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage strategy of seeds and long-term conservation of species gene resources. In addition to the inherent characteristics of the species, developmental status of the seeds, dehydration rate, and the conditions under which they are dried and subsequently re-imbibed are very important factors influencing desiccation tolerance of seeds. Survival, electrolyte leakage rate, and germination/growth rate produced by survived seeds are a excellent synthetic parameter when discussing desiccation tolerance of seeds. Desiccation tolerance of seeds is a quantitative feature. The term 'critical water content' is incorrect and has caused some confusion in assessment of seed recalcitrance. A new working approach to quantify the degree of seed recalcitrance has been proposed in this paper.