The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea...The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.展开更多
This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip...This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip-coating technique was used to coat Zn HA-Zeo/PCL on the Mg substrate at room temperature.The samples were subjected to field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared(FTIR),energy dispersive X-ray spectroscopy(EDX)and antimicrobial potential.Results demonstrated that composite coatings consist of HA,scholzite,zeolite,and PCL phases.EDX spectra indicated the presence of calcium(Ca),silicon(Si),aluminum(Al),zinc(Zn),phosphorus(P)and oxygen(O).The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226-260μm.Zinc-doped HA-Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion.Doped Zn HA-Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E.coli as compared to HA-Zeo sample.Altogether these results showed that the Zn HA-Zeo coatings not only improved the corrosion resistance,but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.展开更多
In order to study the new anode materials for zinc electrowinning,Al/Pb?0.2%Ag rolled alloy was produced by composite casting and hot rolling.Then the effect of cooling ways on properties of Al/Pb?0.2%Ag rolled alloy ...In order to study the new anode materials for zinc electrowinning,Al/Pb?0.2%Ag rolled alloy was produced by composite casting and hot rolling.Then the effect of cooling ways on properties of Al/Pb?0.2%Ag rolled alloy was investigated.As the results of metallographic test indicated,with the increasing of cooling intensity,both Vickers hardness and yield strength of Al/Pb?0.2%Ag rolled alloy increase.Furthermore,the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,presents the finest grain size and shows the lowest oxygen evolution potential(1.5902V),while that of alloy cooled by water and air are1.6143V and1.6288V,respectively.However,the corrosion current density and corrosion rate of the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,are the highest.This can be attributed to its largest specific surface area,which promotes the contact between the anode and electrolyte.展开更多
Mg2Ni0.7M0.3(M=Al,Mn and Ti)alloys were prepared by solid phase sintering process.The phases and microstructure of the alloys were systematically characterized by XRD,SEM and STEM.It was found that Mg3MNi2intermetalli...Mg2Ni0.7M0.3(M=Al,Mn and Ti)alloys were prepared by solid phase sintering process.The phases and microstructure of the alloys were systematically characterized by XRD,SEM and STEM.It was found that Mg3MNi2intermetallic compounds formed in Mg2Ni0.7M0.3alloys and coexisted with Mg and Mg2Ni,and that radius of M atoms closer to that of Mg atom was more beneficial to the formation of Mg3MNi2.The hydrogen storage properties and corrosion resistance of Mg2Ni0.7M0.3alloys were investigated through Sievert and Tafel methods.Mg2Ni0.7M0.3alloys exhibited remarkably improved hydrogen absorption and desorption properties.Significantly reduced apparent dehydriding activation energy values of-46.12,-59.16and-73.15kJ/mol were achieved for Mg2Ni0.7Al0.3,Mg2Ni0.7Mn0.3and Mg2Ni0.7Ti0.3alloys,respectively.The corrosion potential of Mg2Ni0.7M0.3alloys shifted to the positive position compared with Mg2Ni alloy,e.g.there was a corrosion potential difference of0.110V between Mg2Ni0.7Al0.3alloy(-0.529V)and Mg2Ni(-0.639V),showing improved anti-corrosion properties by the addition of Al,Mn and Ti.展开更多
基金Project (MKPT-02-18) supported by the National Defense Science and Technology Industry Committee of ChinaProject (51101171)supported by the National Natural Science Foundation of China
文摘The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.
基金supported by University of Engineering and Technology,Lahore,faculty under research project#ORIC/102-ASRB/1288 and UTM,FRGS grant#R.J130000.7845.4F768.
文摘This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip-coating technique was used to coat Zn HA-Zeo/PCL on the Mg substrate at room temperature.The samples were subjected to field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared(FTIR),energy dispersive X-ray spectroscopy(EDX)and antimicrobial potential.Results demonstrated that composite coatings consist of HA,scholzite,zeolite,and PCL phases.EDX spectra indicated the presence of calcium(Ca),silicon(Si),aluminum(Al),zinc(Zn),phosphorus(P)and oxygen(O).The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226-260μm.Zinc-doped HA-Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion.Doped Zn HA-Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E.coli as compared to HA-Zeo sample.Altogether these results showed that the Zn HA-Zeo coatings not only improved the corrosion resistance,but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.
基金Projects (YNJJ2016012) supported by the Guangdong Jiana Energy and Technology Co.,Ltd-Central South University Joint Research Funding,China
文摘In order to study the new anode materials for zinc electrowinning,Al/Pb?0.2%Ag rolled alloy was produced by composite casting and hot rolling.Then the effect of cooling ways on properties of Al/Pb?0.2%Ag rolled alloy was investigated.As the results of metallographic test indicated,with the increasing of cooling intensity,both Vickers hardness and yield strength of Al/Pb?0.2%Ag rolled alloy increase.Furthermore,the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,presents the finest grain size and shows the lowest oxygen evolution potential(1.5902V),while that of alloy cooled by water and air are1.6143V and1.6288V,respectively.However,the corrosion current density and corrosion rate of the Al/Pb?0.2%Ag rolled alloy,cooled by ice salt,are the highest.This can be attributed to its largest specific surface area,which promotes the contact between the anode and electrolyte.
基金Project (2016J01266) supported by the Natural Science Foundation of Fujian Province,ChinaProject (JZ160474) supported by the Science and Technology Project of Education Department of Fujian Province,China
文摘Mg2Ni0.7M0.3(M=Al,Mn and Ti)alloys were prepared by solid phase sintering process.The phases and microstructure of the alloys were systematically characterized by XRD,SEM and STEM.It was found that Mg3MNi2intermetallic compounds formed in Mg2Ni0.7M0.3alloys and coexisted with Mg and Mg2Ni,and that radius of M atoms closer to that of Mg atom was more beneficial to the formation of Mg3MNi2.The hydrogen storage properties and corrosion resistance of Mg2Ni0.7M0.3alloys were investigated through Sievert and Tafel methods.Mg2Ni0.7M0.3alloys exhibited remarkably improved hydrogen absorption and desorption properties.Significantly reduced apparent dehydriding activation energy values of-46.12,-59.16and-73.15kJ/mol were achieved for Mg2Ni0.7Al0.3,Mg2Ni0.7Mn0.3and Mg2Ni0.7Ti0.3alloys,respectively.The corrosion potential of Mg2Ni0.7M0.3alloys shifted to the positive position compared with Mg2Ni alloy,e.g.there was a corrosion potential difference of0.110V between Mg2Ni0.7Al0.3alloy(-0.529V)and Mg2Ni(-0.639V),showing improved anti-corrosion properties by the addition of Al,Mn and Ti.