In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy wereprepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stear...In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy wereprepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stearic acid ethanol solution. Theeffects of voltages, frequencies and treatment time on the contact angle of the superhydrophobic treated sample were investigated.The results showed that with increasing the voltage, frequency and treatment time, all of the contact angles of the superhydrophobictreated sample increased first, and then decreased, reaching the maximum values at 350 V, 1000 Hz and 5 min, respectively. Theoptimal superhydrophobic coating was mainly composed of MgO and Mg2SiO4 phases, with the pore diameter of ~900 nm, thethickness of ~6.86 μm and the contact angle of 156.96°. The corrosion current density of the superhydrophobic AZ31 sampledecreased by three orders of magnitude, and the amount of hydrogen evolution decreased by 94.77% compared with that of the AZ31substrate sample.展开更多
基金Project(51101085)supported by the National Natural Science Foundation of ChinaProject(2016BAB206109)supported by the Natural Science Foundation of Jiangxi Province,China+6 种基金Project(BK20151291)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BRA2015377)supported by the 333 Project of Jiangsu Province,ChinaProject(20151BBG70039)supported by the Science and Technology Support Plan of Jiangxi Province,ChinaProject(GJJ150721)supported by the Science and Technology Project of Jiangxi Province Education Department,ChinaProject(HAG201601)supported by the Foundation of Huaian Science and Technology,ChinaProject(HAC2015026)supported by the Huaian International Cooperation Program,ChinaProject(jr1416)supported by the Foundation of Jiangsu Provincial Key Laboratory for Interventional Medical Devices,China
文摘In order to improve the corrosion resistance of the Mg alloys, the superhydrophobic coatings on AZ31 Mg alloy wereprepared by a two-step process of micro-arc oxidation treatment and superhydrophobic treatment in stearic acid ethanol solution. Theeffects of voltages, frequencies and treatment time on the contact angle of the superhydrophobic treated sample were investigated.The results showed that with increasing the voltage, frequency and treatment time, all of the contact angles of the superhydrophobictreated sample increased first, and then decreased, reaching the maximum values at 350 V, 1000 Hz and 5 min, respectively. Theoptimal superhydrophobic coating was mainly composed of MgO and Mg2SiO4 phases, with the pore diameter of ~900 nm, thethickness of ~6.86 μm and the contact angle of 156.96°. The corrosion current density of the superhydrophobic AZ31 sampledecreased by three orders of magnitude, and the amount of hydrogen evolution decreased by 94.77% compared with that of the AZ31substrate sample.