With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process ...With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process from LHC Ⅱ to the reaction center. On the basis of this model, a set of rate equation was established. Analysis of its algebra solution led to a general picture of energy transfer process in LHC Ⅱ of higher plants and the strong interaction among pigment molecules in this process. Based on the spectra, kinetics and biological structural data providing some information of energy transfer path and energy dissipation mechanism, it has been found that energy transfer mainly happened between the pigments whose energy level was most closely adjacent, the loss of energy had a close relation to the process of energy transfer and tended to increase with the decrease of energy level. The protective mechanism of antenna system was also discussed.展开更多
The author considers the Cauchy problem for quasilinear inhomogeneous hyperbolic systems.Under the assumption that the system is weakly dissipative,Hanouzet and Natalini established the global existence of smooth solu...The author considers the Cauchy problem for quasilinear inhomogeneous hyperbolic systems.Under the assumption that the system is weakly dissipative,Hanouzet and Natalini established the global existence of smooth solutions for small initial data (in Arch.Rational Mech.Anal.,Vol.169,2003,pp.89-117).The aim of this paper is to give a completely different proof of this result with slightly different assumptions.展开更多
We discuss the warm inflation in the presence of standard scalar field model and modified Chaplyggin gas in brahe-world scenario. We consider weak and strong dissipative regimes with generalized dissipative coefficien...We discuss the warm inflation in the presence of standard scalar field model and modified Chaplyggin gas in brahe-world scenario. We consider weak and strong dissipative regimes with generalized dissipative coefficient. We extract various inflationary parameters. For example, we analyze the behavior of different ratios (ratio of dissipative co-efficient and Hubble parameter Г/3H, ratio of temperature and Hubble parameter T/ H, scalar-to-tensor ratio 'r) with respect to spectral index ns for the weak and strong dissipative regimes through parametric plotting. It is found that T/H and Г/3H satisfied the required conditions in both dissipative regimes. It is also noted that the spectral index (ns) ns=0.96+0.10-0.10 It is remarked here that our results are consistence with observational data WMAP7, WMAP9, and recent Planck data.展开更多
In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order ...In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order accurate gas-kinetic scheme(GKS) to improve the accuracy and resolution. MDCD is firstly extended to non-uniform grids through the modification of dissipation and dispersion coefficients for uniform grids based on the local stretch ratio. Remarkable improvements in accuracy and resolution are achieved on general grids. Then a new scheme, MDCD-GKS is constructed, with the help of MDCD reconstruction, not only for conservative variables, but also for their gradients. MDCD-GKS shows good accuracy and efficiency in typical numerical tests.MDCD-GKS is also coupled with the improved delayed detached-eddy simulation(IDDES) hybrid model and applied in the fine simulation of turbulent flow around a cylinder, and the prediction is in good agreement with experiments when using the relatively coarse grid. The high accuracy and resolution of the developed GKS guarantee its high efficiency in practical applications.展开更多
文摘With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process from LHC Ⅱ to the reaction center. On the basis of this model, a set of rate equation was established. Analysis of its algebra solution led to a general picture of energy transfer process in LHC Ⅱ of higher plants and the strong interaction among pigment molecules in this process. Based on the spectra, kinetics and biological structural data providing some information of energy transfer path and energy dissipation mechanism, it has been found that energy transfer mainly happened between the pigments whose energy level was most closely adjacent, the loss of energy had a close relation to the process of energy transfer and tended to increase with the decrease of energy level. The protective mechanism of antenna system was also discussed.
基金Project supported by the National Natural Science Foundation of China (No. 10728101)the Basic Research Program of China (No. 2007CB814800)+1 种基金the Doctoral Program Foundation of the Ministry of Education of Chinathe "111" Project (No. B08018) and SGST (No. 09DZ2272900)
文摘The author considers the Cauchy problem for quasilinear inhomogeneous hyperbolic systems.Under the assumption that the system is weakly dissipative,Hanouzet and Natalini established the global existence of smooth solutions for small initial data (in Arch.Rational Mech.Anal.,Vol.169,2003,pp.89-117).The aim of this paper is to give a completely different proof of this result with slightly different assumptions.
文摘We discuss the warm inflation in the presence of standard scalar field model and modified Chaplyggin gas in brahe-world scenario. We consider weak and strong dissipative regimes with generalized dissipative coefficient. We extract various inflationary parameters. For example, we analyze the behavior of different ratios (ratio of dissipative co-efficient and Hubble parameter Г/3H, ratio of temperature and Hubble parameter T/ H, scalar-to-tensor ratio 'r) with respect to spectral index ns for the weak and strong dissipative regimes through parametric plotting. It is found that T/H and Г/3H satisfied the required conditions in both dissipative regimes. It is also noted that the spectral index (ns) ns=0.96+0.10-0.10 It is remarked here that our results are consistence with observational data WMAP7, WMAP9, and recent Planck data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11672158, and 11172154)the National Key Basic Research and Development Program (Grant No. 2014CB744100)the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)
文摘In order to simulate multiscale problems such as turbulent flows effectively, the high-order accurate reconstruction based on minimized dispersion and controllable dissipation(MDCD) is implemented in the second-order accurate gas-kinetic scheme(GKS) to improve the accuracy and resolution. MDCD is firstly extended to non-uniform grids through the modification of dissipation and dispersion coefficients for uniform grids based on the local stretch ratio. Remarkable improvements in accuracy and resolution are achieved on general grids. Then a new scheme, MDCD-GKS is constructed, with the help of MDCD reconstruction, not only for conservative variables, but also for their gradients. MDCD-GKS shows good accuracy and efficiency in typical numerical tests.MDCD-GKS is also coupled with the improved delayed detached-eddy simulation(IDDES) hybrid model and applied in the fine simulation of turbulent flow around a cylinder, and the prediction is in good agreement with experiments when using the relatively coarse grid. The high accuracy and resolution of the developed GKS guarantee its high efficiency in practical applications.