Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio fre...Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design.展开更多
文摘为降低烧结工序能耗,分析了固体燃耗、电耗、点火热耗等对降低烧结工序能耗的影响。通过改善燃料粒度组成、提高料温和料层厚度、控制返矿温度、采用节能点火器、控制点火温度等措施,吨矿燃料消耗由53.6 kg/t降低到52.08 kg/t;电耗由45.42 k Wh/t降低到43.88 k Wh/t;吨矿煤气单耗由8.33 m3/t降低到5.32 m3/t,节能效果显著。
基金The National High Technology Research and Deve-lopment Program of China (863Program) (No.2003AA143040).
文摘Major consideration dimensions for the physical layer design of wireless sensor network (WSN) nodes is analyzed by comparing different wireless communication approaches, diverse mature standards, important radio frequency (RF) parameters and various microcontroller unit (MCU) solutions. An implementation of the WSN node is presented with experimental results and a novel "one processor working at two frequencies" energy saving strategy. The lifetime estimation issue is analyzed with consideration to the periodical listen required by common WSN media access control (MAC) algorithms. It can be concluded that the startup time of the RF which determines the best sleep time ratio and the shortest backoff slot time of MAC, the RF frequency and modulation methods which determinate the RX and TX current, and the overall energy consumption of the dual frequency MCU SOC ( system on chip) are the most essential factors for the WSN node physical layer design.