Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of ...Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of wear in Iran’s railway lines and its imposed maintenance costs oblige us to make modifications on the various geometrical parameters. In order to ensure the effectiveness of these changes, it is necessary to investigate these parameters and their effects on the wear. This research is aimed at studying the effects of different track geometrical parameters on the vertical and lateral wear by conducting a three phase field investigation. The first phase was carried out at the switches of a station, the second phase at a straight line, and the third at a curved line out of the station. The results obtained are analyzed and the role of each track geometrical parameter in the rail wear is discussed. Recommendations for prevention or reduction of rail wear are presented.展开更多
Fluidized-bed reactor is a candidate for dimethyl ether (DME) synthesis from syngas because of its excellent heat removal capability. In order to improve the attrition resistance of catalyst, an amount of silica sol...Fluidized-bed reactor is a candidate for dimethyl ether (DME) synthesis from syngas because of its excellent heat removal capability. In order to improve the attrition resistance of catalyst, an amount of silica sol as binder was added to the catalyst composed of methanol synthesis component CuO/ZnO/Al2O3 and methanol dehydration component HZSM-5, which was prepared by coprecipitation and shaped by spray drying to get spherical particles. The effect of silica sol on the catalytic activity was investigated in a fixed-bed flow microreactor. Based on the experiment results, silica sol in the range of 0-20wt% had small effect on the catalytic activity. Generally, the CO conversion and DME yield decreased with the increase in concentration of silica sol, while the attrition resistance of catalysts increased with increasing silica sol, indicating that it was feasible to improve the attrition resistance without greatly sacrificing the activity of catalyst. In addition, the characterizations of catalysts were carried out using Brunauer-Emmett-Teller (BET), X-ray powder diffraction (XRD) and temperature programmed reduction (TPR).展开更多
Planetary wheel rolling on a coal-bed was simplified as rigid wheel rolling on the coal-bed with a rigid base when a Ver- tical planetary mill(VPM)is running.Based on our analysis,we conclude that the Bekker formulati...Planetary wheel rolling on a coal-bed was simplified as rigid wheel rolling on the coal-bed with a rigid base when a Ver- tical planetary mill(VPM)is running.Based on our analysis,we conclude that the Bekker formulation for computing rolling resis- tance is not applicable to calculate directly the rolling resistance of the wheel.According to the principle of the Bekker apparatus,pressure-sinkage curves were obtained by tests on a piece of mono-axial consolidation apparatus used in soil-mechanics.The de- formation modulus of the coal-bed was calculated using elastic mechanics.A finite element model of the planetary wheel coal-bed was built up by the use of a rigid and a Drucker-Prager material model in LS-DYNA.According to the simulation results,the wheel rolling resistance,the grinding power consumption and the motor power of the mill were calculated and the mistake in the initial design of the mill was modified.The simulation results agree well with the results of the semi-industrial tests.展开更多
To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-d...To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel.展开更多
We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with c...We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.展开更多
The expansion and contraction of an open-graded friction course(OGFC)with a nominal maximum aggregate size of 13.2 mm(OGFC-13)with three air void contents(AVCs)and six saturation degrees(SDs)exposed to freeze-thaw(FT)...The expansion and contraction of an open-graded friction course(OGFC)with a nominal maximum aggregate size of 13.2 mm(OGFC-13)with three air void contents(AVCs)and six saturation degrees(SDs)exposed to freeze-thaw(FT)cycles were measured using strain gauges.Cantabro tests were conducted on OGFC-13 specimens before and after FT cycles to evaluate the degradation of raveling resistance.The effects of SD,AVC,and the number of FT cycles on the expansion and contraction of OGFC-13 and degradation of raveling resistance were analyzed.Results show that OGFC with low water saturation will contract to stability during the freezing process,whereas fully saturated OGFC will contract first and then expand to be stable.OGFC with a medium saturation experienced three stages,namely,contraction,expansion,and contraction,during the freezing process.For the OGFC with a low SD,the decrease in the void content can effectively reduce the low temperature shrinkage.By contrast,for the OGFC with a high SD,lower void content produces more temperature shrinkage at the beginning of freezing and less expansion at the end of freezing.The decreases in SD and AVC can effectively improve the raveling resistance of OGFCs exposed to FT cycles.展开更多
When it comes to evaluating the effectiveness of interventions, the random experiment is considered the "gold standard". Randomization is considered the gold standard because it provides a way of decreasing the chan...When it comes to evaluating the effectiveness of interventions, the random experiment is considered the "gold standard". Randomization is considered the gold standard because it provides a way of decreasing the chance that systematic differences, other than type of intervention, will be obtained between treatment and control groups. What has received little attention in the literature, however, is the fact that even with random assignment researchers may end up facing problems similar to those faced with data from a study that did not use randomization. This is because attrition may result in the values of potentially confounding variables no longer being "balanced" between (or among) the groups under investigation. This means that in order to estimate the effect of the treatment, one must find some way of adjusting for these potential confounders. Although multiple regression modeling is the way social science researchers typically control for the effects of potentially confounding variables, this paper argues that a modification of multiple regression modeling that uses propensity scores, under some conditions, may provide more parsimonious and better fitting models.展开更多
More and more information are needed in social life and commercial production, causing significant pressure on the sampling and too much time spent on signal sampling. Compressed sensing is one emerging hotspot in sig...More and more information are needed in social life and commercial production, causing significant pressure on the sampling and too much time spent on signal sampling. Compressed sensing is one emerging hotspot in signal processing which employs a special sampling method to capture and represent compressible signals at a rate significantly below the Nyquist rate. In this paper, a Takagi-Sugeno-Kang (TSK) Model based on compressed-sensing sampling theorem is proposed for grinding power. It is further tested by using the actual production data, and the algorithm performance in grinding power model is also analyzed. The experiments show the validity and effectiveness of the proposed modeling method and its bright application foreground in other fields with similar features, such as power, metallurgy and so on.展开更多
Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinf...Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.展开更多
In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commerci...In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commercial multi-body software SIMPACK to evaluate the dynamic response of the vehicle and track; a local contact model based on Hertzian theory and a novel method, named FaStrip (Sichani et al., 2016), to calculate the normal and tangential forces, respectively; a wear model proposed by the University of Sheffield (known as the USFD wear function) to estimate the amount of material removed and its distribution along the wheel profile; and a smoothing and updating strategy. A simulation of the wheel wear of the high-speed train CRH3 in service on the Wuhan-Guangzhou railway line was performed. A virtual railway line based on the statistics of the line was used to represent the entire real track. The model was validated using the wheel wear data of the CRH3 operating on the Wuhan- Guangzhou line, monitored by the authors' research group. The results of the predictions and measurements were in good agreement.展开更多
This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance...This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.展开更多
Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment(including adhesion conditions and motion attitude of train and track system),which is a fundamental topic for fu...Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment(including adhesion conditions and motion attitude of train and track system),which is a fundamental topic for further insight into wheel/rail tread wear and rolling contact fatigue(RCF).The rail gauge corner lubrication(RGCL)devices have been installed on the metro outer rail to mitigate its wear on the curved tracks.This paper presents an investigation into the influence ofRGCL on wheel/rail nonHertzian contact and rail surface RCF on the curves through numerical analysis.To this end,a metro vehicle-slab track interaction dynamics model is extended,in which an accurate wheel/rail non-Hertzian contact algorithm is implemented.The influence of RGCL on wheel/rail creep,contact stress and adhesion-slip distributions and fatigue damage of rail surface are evaluated.The simulation results show that RGCL can markedly affect wheel/rail contact on the tight curves.It is further suggested that RGCL can reduce rail surface RCF on tight curves through the wheel/rail low-friction interactions.展开更多
文摘Rail wear has dramatic impact on track performance, ride quality and maintenance costs. The amount of rail wear is influenced by various elements among which geometric parameters play an important role. The amount of wear in Iran’s railway lines and its imposed maintenance costs oblige us to make modifications on the various geometrical parameters. In order to ensure the effectiveness of these changes, it is necessary to investigate these parameters and their effects on the wear. This research is aimed at studying the effects of different track geometrical parameters on the vertical and lateral wear by conducting a three phase field investigation. The first phase was carried out at the switches of a station, the second phase at a straight line, and the third at a curved line out of the station. The results obtained are analyzed and the role of each track geometrical parameter in the rail wear is discussed. Recommendations for prevention or reduction of rail wear are presented.
文摘Fluidized-bed reactor is a candidate for dimethyl ether (DME) synthesis from syngas because of its excellent heat removal capability. In order to improve the attrition resistance of catalyst, an amount of silica sol as binder was added to the catalyst composed of methanol synthesis component CuO/ZnO/Al2O3 and methanol dehydration component HZSM-5, which was prepared by coprecipitation and shaped by spray drying to get spherical particles. The effect of silica sol on the catalytic activity was investigated in a fixed-bed flow microreactor. Based on the experiment results, silica sol in the range of 0-20wt% had small effect on the catalytic activity. Generally, the CO conversion and DME yield decreased with the increase in concentration of silica sol, while the attrition resistance of catalysts increased with increasing silica sol, indicating that it was feasible to improve the attrition resistance without greatly sacrificing the activity of catalyst. In addition, the characterizations of catalysts were carried out using Brunauer-Emmett-Teller (BET), X-ray powder diffraction (XRD) and temperature programmed reduction (TPR).
文摘Planetary wheel rolling on a coal-bed was simplified as rigid wheel rolling on the coal-bed with a rigid base when a Ver- tical planetary mill(VPM)is running.Based on our analysis,we conclude that the Bekker formulation for computing rolling resis- tance is not applicable to calculate directly the rolling resistance of the wheel.According to the principle of the Bekker apparatus,pressure-sinkage curves were obtained by tests on a piece of mono-axial consolidation apparatus used in soil-mechanics.The de- formation modulus of the coal-bed was calculated using elastic mechanics.A finite element model of the planetary wheel coal-bed was built up by the use of a rigid and a Drucker-Prager material model in LS-DYNA.According to the simulation results,the wheel rolling resistance,the grinding power consumption and the motor power of the mill were calculated and the mistake in the initial design of the mill was modified.The simulation results agree well with the results of the semi-industrial tests.
基金Project(51805374)supported by the National Natural Science Foundation of ChinaProject(208YFB1201603-08)supported by the Key R&D Program of Ministry of Science and Technology,China。
文摘To analyze wheel wear discrepancy between motor car and trailer of an intercity train,a novel wheel wear rates calculation model was proposed,which was composed of the intercity train dynamics model,wheel-rail three-dimensional rolling contact FEM model and the wear model.The simulated results were contrasted with measured results in field test.The simulated results showed the motor car wheels had larger rotation rate and longitudinal creepage than the trailer wheels.Meanwhile,the motor car wheels encountered larger vertical forces and longitudinal forces from bogie because of the heavier car body and the impact of traction torque.The traction torque acting on motor car wheel could increase the slip rates in the rear part of wheel contact patch and weaken the spinning phenomenon of relative slip.Larger contact pressure and slip rates caused the higher wear rates of motor car wheel than those of trailer wheel.The overall trends of wheel wear depth in simulated and tested results were similar.And they both showed the motor car wheel encountered the more serious wear than the trailer wheel.These models can be used to study the effect of the traction characteristics curves on the wear of wheel.
基金The support from both the Research Foundation for Returning Scholars of Chinathe China Postdoctoral Science Foundation
文摘We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.
基金The National Natural Science Foundation of China (No. 52178421)the Natural Science Foundation of Jiangsu Province(No. BK20191300)the Fundamental Research Funds for the Central Universities (No. B210202036)。
文摘The expansion and contraction of an open-graded friction course(OGFC)with a nominal maximum aggregate size of 13.2 mm(OGFC-13)with three air void contents(AVCs)and six saturation degrees(SDs)exposed to freeze-thaw(FT)cycles were measured using strain gauges.Cantabro tests were conducted on OGFC-13 specimens before and after FT cycles to evaluate the degradation of raveling resistance.The effects of SD,AVC,and the number of FT cycles on the expansion and contraction of OGFC-13 and degradation of raveling resistance were analyzed.Results show that OGFC with low water saturation will contract to stability during the freezing process,whereas fully saturated OGFC will contract first and then expand to be stable.OGFC with a medium saturation experienced three stages,namely,contraction,expansion,and contraction,during the freezing process.For the OGFC with a low SD,the decrease in the void content can effectively reduce the low temperature shrinkage.By contrast,for the OGFC with a high SD,lower void content produces more temperature shrinkage at the beginning of freezing and less expansion at the end of freezing.The decreases in SD and AVC can effectively improve the raveling resistance of OGFCs exposed to FT cycles.
文摘When it comes to evaluating the effectiveness of interventions, the random experiment is considered the "gold standard". Randomization is considered the gold standard because it provides a way of decreasing the chance that systematic differences, other than type of intervention, will be obtained between treatment and control groups. What has received little attention in the literature, however, is the fact that even with random assignment researchers may end up facing problems similar to those faced with data from a study that did not use randomization. This is because attrition may result in the values of potentially confounding variables no longer being "balanced" between (or among) the groups under investigation. This means that in order to estimate the effect of the treatment, one must find some way of adjusting for these potential confounders. Although multiple regression modeling is the way social science researchers typically control for the effects of potentially confounding variables, this paper argues that a modification of multiple regression modeling that uses propensity scores, under some conditions, may provide more parsimonious and better fitting models.
基金Supported by the National Basic Research Program of China (2009CB320601)the Fundamental Research Funds for the Central Universities of China (N100408001)
文摘More and more information are needed in social life and commercial production, causing significant pressure on the sampling and too much time spent on signal sampling. Compressed sensing is one emerging hotspot in signal processing which employs a special sampling method to capture and represent compressible signals at a rate significantly below the Nyquist rate. In this paper, a Takagi-Sugeno-Kang (TSK) Model based on compressed-sensing sampling theorem is proposed for grinding power. It is further tested by using the actual production data, and the algorithm performance in grinding power model is also analyzed. The experiments show the validity and effectiveness of the proposed modeling method and its bright application foreground in other fields with similar features, such as power, metallurgy and so on.
基金Project(51165022)supported by the National Natural Science Foundation of ChinaProject(20122117)supported by the Lanzhou Science and Technology Bureau Foundation,ChinaProject(1310RJZA036)supported by the Natural Science Foundation of Gansu Province,China
文摘Nanoparticles are increasingly being used to improve the friction and wear performance of polymers. In this study, we investigated the tribological behavior and energy dissipation characteristics of nano-Al_2O_3-reinforced polytetrafluoroethylenepolyphenylene sulfide(PTFE-PPS) composites in a sliding system. The tribological behaviors of the composites were evaluated under different normal loads(100–300 N) at a high linear velocity(2 m/s) using a block-on-ring tester. Addition of the nano-Al_2O_3 filler improved the antiwear performance of the PTFE-PPS composites, and the friction coefficient increased slightly. The lowest wear rate was obtained when the nano-Al_2O_3 content was 3%(volume fraction). Further, the results indicated a linear correlation between wear and the amount of energy dissipated, even though the wear mechanism changed with the nano-Al_2O_3 content, independent of the normal load applied.
基金Project supported by the National Natural Science Foundation of China (Nos. U 1434201, 51275427, and 51605394), and the Scientific Research Foundation of State Key Laboratory of Traction Power (No. 2015TPL_T01 ), China
文摘In this paper, we present a comprehensive model for the prediction of the evolution of high-speed train wheel profiles due to wear. The model consists of four modules: a multi-body model implemented with the commercial multi-body software SIMPACK to evaluate the dynamic response of the vehicle and track; a local contact model based on Hertzian theory and a novel method, named FaStrip (Sichani et al., 2016), to calculate the normal and tangential forces, respectively; a wear model proposed by the University of Sheffield (known as the USFD wear function) to estimate the amount of material removed and its distribution along the wheel profile; and a smoothing and updating strategy. A simulation of the wheel wear of the high-speed train CRH3 in service on the Wuhan-Guangzhou railway line was performed. A virtual railway line based on the statistics of the line was used to represent the entire real track. The model was validated using the wheel wear data of the CRH3 operating on the Wuhan- Guangzhou line, monitored by the authors' research group. The results of the predictions and measurements were in good agreement.
基金Project supported by the National Natural Science Foundation of China (No. U 1134202)
文摘This paper presents a detailed investigation, via field experiment, into the mechanism of high-order polygonal wear of wheels of a new type of high-speed train. The investigation was carried out during the performance acceptance test of the train and its initial commercial operation. The investigation covered the performance acceptance test of 150 000 km and the commercial operation of about 150 000 km. In the performance acceptance test of the first stage of about 70 000 km, at 200-250 km/h with full loading and sometimes overloading by 30%, the serious polygonal wear of 23-order took place on all the wheels of the train, and was measured and analyzed in detail. All the potygonized wheels were re-profiled because the polygonal wear had caused strong vibration and damage to the train parts. After re-profiling, the vibration of the train and track and the wear status of the wheels were measured and analyzed at different test mileages according to the polygonal wear situation of the wheels. The measured vibration of the train includes the accelerations at different positions of a motor car and a trail car. The vibration modes of the key parts of the bogies of the two cars were calculated. Meanwhile, the track resonant frequencies were investigated at the site. The purpose of the above tests and analysis is try to find the frequency of work mode matching the passing frequency of the high-order wheel polygon. The present investigation shows that one of the working models causes the formation and development of the high-order wheel polygonal wear. The growth of this wear was effectively reduced through the frequent changing of the running speed of the train operating on the way back and forth every day.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0710902)the National Natural Science Foundation of China(Grant Nos.51735012,52072317,and UJ9A20110)the State Key Laboratory of Traction Power(Grant No.202JTPL-T08).
文摘Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment(including adhesion conditions and motion attitude of train and track system),which is a fundamental topic for further insight into wheel/rail tread wear and rolling contact fatigue(RCF).The rail gauge corner lubrication(RGCL)devices have been installed on the metro outer rail to mitigate its wear on the curved tracks.This paper presents an investigation into the influence ofRGCL on wheel/rail nonHertzian contact and rail surface RCF on the curves through numerical analysis.To this end,a metro vehicle-slab track interaction dynamics model is extended,in which an accurate wheel/rail non-Hertzian contact algorithm is implemented.The influence of RGCL on wheel/rail creep,contact stress and adhesion-slip distributions and fatigue damage of rail surface are evaluated.The simulation results show that RGCL can markedly affect wheel/rail contact on the tight curves.It is further suggested that RGCL can reduce rail surface RCF on tight curves through the wheel/rail low-friction interactions.