The internal friction behavior of Al green power compact duxing the sintering process was studied as a function of temperature. The internal friction measurements were performed from room temperature to 600 °C. T...The internal friction behavior of Al green power compact duxing the sintering process was studied as a function of temperature. The internal friction measurements were performed from room temperature to 600 °C. Two typical internal friction peaks were detected corresponding to heating and cooling processes, respectively. The heating peak corresponds to a recrystallization process of deformed Al particles, which is influenced by many extrinsic parameters, such as measuring frequency, strain amplitude, heating rate, power particle size and compacting pressure. However, the intrinsic nature of the peak is originated from the micro-sliding of the weak-bonding interfaces between Al particles and increased dislocation density induced in compressing. The cooling peak with the activation energy of (1.64±0.06) eV is associated with the grain boundary relaxation, which can be interpreted as the viscous sliding of grain boundaries. The similar phenomena are also found in the Mg green powder compact.展开更多
The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 3...The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 360/20, revolution speed of 300.9 r/min, powder-filling ratio of 10.88%, ball-filling ratio of 20.53%-23.88%, and grinding time of approximately 6 h. The discrete element method(DEM) was employed to analyze relationship between the noisy-power dissipation and the grinding efficiency, and equations describing the relationship were derived. The mean particle size of the ground powder decreased with a decrease in the degree of noisy-power dissipation, while the grinding efficiency and the amount of specific impact power used decreased with an increase in the degree of noisy-power dissipation.展开更多
We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with c...We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.展开更多
In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. ...In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. The pair correlation function, the mean square displacement, the static structure factor, and the bond angle correlation function characterizing the structural properties, and the velocity autocorrelation function with Fourier spectrum function characterizing the single-particle motion have been calculated for different values of coupling constant r and viscous damping constant vf. The results show that the system will coagulate quickly with increasing viscous damping constant and coupling constant, and the critical value of friction parameter decreases with increasing the coupling constant in the system.展开更多
基金Project(51301150)supported by the National Natural Science Foundation of ChinaProject(2013KJXX-11)supported by the Special Program of Youth New-star of Science and Technology of Shaanxi Province,ChinaProject(Physics-2012SXTS05)supported by the High-level University Construction Special Program of Shaanxi Province,China
文摘The internal friction behavior of Al green power compact duxing the sintering process was studied as a function of temperature. The internal friction measurements were performed from room temperature to 600 °C. Two typical internal friction peaks were detected corresponding to heating and cooling processes, respectively. The heating peak corresponds to a recrystallization process of deformed Al particles, which is influenced by many extrinsic parameters, such as measuring frequency, strain amplitude, heating rate, power particle size and compacting pressure. However, the intrinsic nature of the peak is originated from the micro-sliding of the weak-bonding interfaces between Al particles and increased dislocation density induced in compressing. The cooling peak with the activation energy of (1.64±0.06) eV is associated with the grain boundary relaxation, which can be interpreted as the viscous sliding of grain boundaries. The similar phenomena are also found in the Mg green powder compact.
基金supported by the Inert Anode Material Production and Application in Electrolytic Production of Aluminium program of the Yunnan Aluminium Yonxin Aluminium Co. Ltd
文摘The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 360/20, revolution speed of 300.9 r/min, powder-filling ratio of 10.88%, ball-filling ratio of 20.53%-23.88%, and grinding time of approximately 6 h. The discrete element method(DEM) was employed to analyze relationship between the noisy-power dissipation and the grinding efficiency, and equations describing the relationship were derived. The mean particle size of the ground powder decreased with a decrease in the degree of noisy-power dissipation, while the grinding efficiency and the amount of specific impact power used decreased with an increase in the degree of noisy-power dissipation.
基金The support from both the Research Foundation for Returning Scholars of Chinathe China Postdoctoral Science Foundation
文摘We have studied the efficiency of energy consumption in the comminution of mica powder with cavitation abrasive water jet technology. The energy required to create new surfaces in the comminution of mica powder with cavitation abrasive water jet was calculated,in order to estimate its efficiency of energy consumption. The particle size distribution and the specific surface area were measured by applying a JEM-200CX transmission electron microscope and an Autosorb-1 automatic surface area analyzer. The study results show that the efficiency of energy consumed in creating new surface areas is as high as 2.92%,or 4.94% with the aid of cavitation in the comminution of mica powder. This efficiency will decrease with an increase in the number of comminutions. After three comminutions,the efficien-cies will become 1.91% and 2.29% for comminution without cavitation and with cavitation,respectively. The abrasive water jet technology is an effective way for comminution of mica powder.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10547121 and 10175036
文摘In this paper, the structural and single-particle motive properties of a two-dimensional dusty plasmas are investigated numerically by molecular dynamics simulation within the framework of a dissipative Yukawa model. The pair correlation function, the mean square displacement, the static structure factor, and the bond angle correlation function characterizing the structural properties, and the velocity autocorrelation function with Fourier spectrum function characterizing the single-particle motion have been calculated for different values of coupling constant r and viscous damping constant vf. The results show that the system will coagulate quickly with increasing viscous damping constant and coupling constant, and the critical value of friction parameter decreases with increasing the coupling constant in the system.