In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose cro...In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time.展开更多
The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this p...The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.展开更多
The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling contro...The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
A simulation of the properties of the shifting scintillator neutron detector using 6LiF/ZnS(Ag) scintillation screens is performed.The simulation results show that the light attenuation length of standard BC704 scinti...A simulation of the properties of the shifting scintillator neutron detector using 6LiF/ZnS(Ag) scintillation screens is performed.The simulation results show that the light attenuation length of standard BC704 scintillator is about 0.65 mm.Its thermal neutron detection efficiency,gamma sensitivity and intrinsic spatial resolution can achieve around 50.0%,10 5and 0.18 mm(along X-axis) respectively.For the detector,air coupling position resolution is better than the silicone oil coupling.Some of the simulation results are compared with experimental results.They are in agreement.This work will be helpful for constructing neutron detector for high intensity powder diffractometer at Chinese spallation neutron source.展开更多
This paper shows the existence of insensitizing controls for a class of nonlinear complex Ginzburg- Landau equations with homogeneous Dirichlet boundary conditions and arbitrarily located internal controller. When the...This paper shows the existence of insensitizing controls for a class of nonlinear complex Ginzburg- Landau equations with homogeneous Dirichlet boundary conditions and arbitrarily located internal controller. When the nonlinearity in the equation satisfies a suitable superlinear growth condition at infinity, the existence of insensitizing controls for the corresponding semilinear Ginzburg-Landau equation is proved. Meanwhile, if the nonlinearity in the equation is only a smooth function without any additional growth condition, a local result on insensitizing controls is obtained. As usual, the problem of insensitizing controls is transforlned into a suitable controllability problem for a coupled system governed by a semilinear complex Ginzburg-Landau equation and a linear one through one control. The key is to establish an observability inequality for a coupled linear Ginzburg-Landau system with one observer.展开更多
基金Supported by the Science and Technological Fund of Anhui Province for Outstanding Youth (1108085J02), the National Natural Science Foundation of Anhui Province (K J2010A090)
文摘In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time.
基金Project(50375139) supported by the National Natural Science Foundation of ChinaProject(NCET-04-0545) supported by the New Century Excellent Talent Plan of the Ministry of Education of China
文摘The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB035600)the National Natural Science Foundation of China(Grant No.51377121)
文摘The stability and synchronous performance are usually hard to be improved simultaneously in the biaxial cross-coupling position motion control system.Based on analyzing the characteristics of the cross-coupling control system,a robust adaptive cross-coupling control strategy is proposed.To restrict influences of destabilizing factors and improve both of stability and synchronous performance,the strategy forces dual axes to track the same reference model using Narendra adaptive control theory.And then,a robust parameters adaptive law is proposed.The stability analysis of the proposed strategy is conducted by applying Lyapunov stability theory.Related simulations and experiments indicate that the proposed strategy can improve synchronous performance and stability simultaneously.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.11175257)
文摘A simulation of the properties of the shifting scintillator neutron detector using 6LiF/ZnS(Ag) scintillation screens is performed.The simulation results show that the light attenuation length of standard BC704 scintillator is about 0.65 mm.Its thermal neutron detection efficiency,gamma sensitivity and intrinsic spatial resolution can achieve around 50.0%,10 5and 0.18 mm(along X-axis) respectively.For the detector,air coupling position resolution is better than the silicone oil coupling.Some of the simulation results are compared with experimental results.They are in agreement.This work will be helpful for constructing neutron detector for high intensity powder diffractometer at Chinese spallation neutron source.
基金supported by National Natural Science Foundation of China(Grant Nos.11371084 and 11171060)National Basic Research Program of China(973 Program)(Grant No.2011CB808002)Program for New Century Excellent Talents in University(Grant No.NCET-12-0812)
文摘This paper shows the existence of insensitizing controls for a class of nonlinear complex Ginzburg- Landau equations with homogeneous Dirichlet boundary conditions and arbitrarily located internal controller. When the nonlinearity in the equation satisfies a suitable superlinear growth condition at infinity, the existence of insensitizing controls for the corresponding semilinear Ginzburg-Landau equation is proved. Meanwhile, if the nonlinearity in the equation is only a smooth function without any additional growth condition, a local result on insensitizing controls is obtained. As usual, the problem of insensitizing controls is transforlned into a suitable controllability problem for a coupled system governed by a semilinear complex Ginzburg-Landau equation and a linear one through one control. The key is to establish an observability inequality for a coupled linear Ginzburg-Landau system with one observer.