期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
海上高产气井防砂管柱冲蚀-腐蚀耦合作用风险评估研究 被引量:5
1
作者 郭敏灵 董钊 +2 位作者 孟文波 崔书姮 张群 《复杂油气藏》 2021年第2期111-118,共8页
冲蚀腐蚀耦合作用对海上高产气井防砂管柱的损害机理比单一腐蚀或冲蚀作用更为复杂,实验显示,耦合作用下的管材损失速率比单一作用高16.27%~251.79%。结合冲蚀腐蚀实验和已有的冲蚀腐蚀理论模型,考虑CO_(2)分压、温度、流速、粒径和含... 冲蚀腐蚀耦合作用对海上高产气井防砂管柱的损害机理比单一腐蚀或冲蚀作用更为复杂,实验显示,耦合作用下的管材损失速率比单一作用高16.27%~251.79%。结合冲蚀腐蚀实验和已有的冲蚀腐蚀理论模型,考虑CO_(2)分压、温度、流速、粒径和含砂量等因素影响,建立了适用于筛管冲蚀腐蚀耦合作用的经验模型;以南海L-1气田为目标区,分析11口井防砂筛管冲蚀腐蚀情况并预测管柱寿命。 展开更多
关键词 冲蚀腐蚀耦合 耦合作用实验 预测模型 管柱寿命
下载PDF
Investigation of meso-failure behavior of rock under thermal-mechanical coupled effects based on high temperature SEM 被引量:7
2
作者 ZUO JianPing XIE HePing ZHOU HongWei 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第10期1855-1862,共8页
It is extremely important to study and understand the deformation behavior and strength characteristics of rocks under thermal-mechanical (TM) coupling effects. Failure behavior and strength characteristics of Pingd... It is extremely important to study and understand the deformation behavior and strength characteristics of rocks under thermal-mechanical (TM) coupling effects. Failure behavior and strength characteristics of Pingdingshan sandstone were investigated at room temperatures up to 300℃ in an internally heated apparatus and tensile load through meso-scale laboratory experiments in this work. 33 experiments have successfully been conducted for Pingdingshan sandstone. Experimental results indicated that the tensile strength increased slowly with temperatures from 25℃ to 100℃, and then sharply jumped from 100℃ to 150℃, and finally decreased slightly with temperatures from 150℃ to 300℃. And about 150℃ is the threshold temperature of strength and thermal cracking. At low temperatures (25℃-150℃), sandstone strength is determined by relatively weak clay cement. However, at higher temperatures (150℃-300℃), because of the strength enhancement of clay cement, sandstone strength is controlled by both mineral particles and clay cement. The effects of cement clay, micro-cracks closing, and thermal cracking were the possible reasons for our detailed analysis. In addition, the typical fracture position maps and nominal stress-strain curves indicated that the temperature had strong effects on the failure mechanism of sandstone. The fractograph implied that the dominant fracture mechanism tended to transform from brittle at low temperatures to ductile at high temperatures. 展开更多
关键词 SANDSTONE thermal-mechanical (TM) effects MESO-SCALE tensile strength thermal cracking FRACTOGRAPHY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部