An initial differential mathematical model of the process of catalytic reactions coupled in a membrane reactor is developed.The "donor" reaction refers to one that produces the key substance that may permeat...An initial differential mathematical model of the process of catalytic reactions coupled in a membrane reactor is developed.The "donor" reaction refers to one that produces the key substance that may permeate the membrane and be consumed by the "acceptor" reaction.According to the maximum principle in mathematics,the analysis indicates that,in order to obtain maximum yield of the "acceptor" reaction,there should exist our optimal profile of the packed-bed catalytic activity on the "acceptor" reaction side of the membrane reactor,which is a one-time open-close function at the optimum position,as followsξ *(z)=0 ? (0<z<z r ) ξ max (z r ≤z≤1)where ξ *(z) is optimal function of catalytic activity, ξ max its maximum value, z the position,and z r the optimum position.The function means physically that catalytic activity equals to zero near the inlet and that,at the optimum position,activity should be kept maximum constant value on the "acceptor" reaction side.Finally the effect of membrane permeability on the optimum catalytic activity is also investigated.It is found that,as the membrane permeability increases,the optimum open-close position of optimal catalytic activity profile function will move closer to the inlet of the membrane reactor.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
To obtain new functional aromatic polymer materiul. 3,3'-biacenaphthene, which is used as macromolecule intermediate of,funcrion aromatic polymer material, was synthesized through the coupling reaction of acenaphthen...To obtain new functional aromatic polymer materiul. 3,3'-biacenaphthene, which is used as macromolecule intermediate of,funcrion aromatic polymer material, was synthesized through the coupling reaction of acenaphthene catalyzing by ionic liquid ([bmim]CI/FeCl3) at mild reaction condition. Pure 3,3'-biacenaphthene was obtained hy recrystalling and column chromatography from the reaction mixture and was determined by GC/MS, SHNMR arid FTIR analysis. The influence of various reaction conditions on the yield of 3,3'-biacenaphthene were studied by GC analysis. The result shows that the optimun synthesis conditions of the coupling reaction are, as following: the molar ratio of FeCl3 to [BmimlCl being 3, the mole ratio of FeCl3 in [Bmim]Cl/FeCl3 to acenaphthene being 4. the reaction temperamre being 20 ℃ the reaction time being 4h and the solvent of the reaction system being PhNO2 Under those conditions, the yield of the 3.3'-biacenaphthene will be 48.71% and selectivity, of that will be 78.56 %. Farther more, [bmim]Cl/FeCl3 has no pollution to environments and can be reused.展开更多
In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier tr...In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SG n-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their catalytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG 2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Meanwhile, the optimal condition for the catalytic oxidation of SG 2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3:1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.展开更多
The oxidative coupling of methylarenes and N,N-dialkylformamides was developed, and the appropriate reaction conditions were established. By using I2 as the catalyst, and tert-butyl hydroperoxide(TBHP) as the oxidant,...The oxidative coupling of methylarenes and N,N-dialkylformamides was developed, and the appropriate reaction conditions were established. By using I2 as the catalyst, and tert-butyl hydroperoxide(TBHP) as the oxidant, the reaction provided N,N-dialkylamides or N-alkylamides with moderate yields via multiple sp3 C-H bonds activation of methylarenes in aqueous and metal-free conditions.展开更多
文摘An initial differential mathematical model of the process of catalytic reactions coupled in a membrane reactor is developed.The "donor" reaction refers to one that produces the key substance that may permeate the membrane and be consumed by the "acceptor" reaction.According to the maximum principle in mathematics,the analysis indicates that,in order to obtain maximum yield of the "acceptor" reaction,there should exist our optimal profile of the packed-bed catalytic activity on the "acceptor" reaction side of the membrane reactor,which is a one-time open-close function at the optimum position,as followsξ *(z)=0 ? (0<z<z r ) ξ max (z r ≤z≤1)where ξ *(z) is optimal function of catalytic activity, ξ max its maximum value, z the position,and z r the optimum position.The function means physically that catalytic activity equals to zero near the inlet and that,at the optimum position,activity should be kept maximum constant value on the "acceptor" reaction side.Finally the effect of membrane permeability on the optimum catalytic activity is also investigated.It is found that,as the membrane permeability increases,the optimum open-close position of optimal catalytic activity profile function will move closer to the inlet of the membrane reactor.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金National Natural Science Foundation of China (No. 20207003)
文摘To obtain new functional aromatic polymer materiul. 3,3'-biacenaphthene, which is used as macromolecule intermediate of,funcrion aromatic polymer material, was synthesized through the coupling reaction of acenaphthene catalyzing by ionic liquid ([bmim]CI/FeCl3) at mild reaction condition. Pure 3,3'-biacenaphthene was obtained hy recrystalling and column chromatography from the reaction mixture and was determined by GC/MS, SHNMR arid FTIR analysis. The influence of various reaction conditions on the yield of 3,3'-biacenaphthene were studied by GC analysis. The result shows that the optimun synthesis conditions of the coupling reaction are, as following: the molar ratio of FeCl3 to [BmimlCl being 3, the mole ratio of FeCl3 in [Bmim]Cl/FeCl3 to acenaphthene being 4. the reaction temperamre being 20 ℃ the reaction time being 4h and the solvent of the reaction system being PhNO2 Under those conditions, the yield of the 3.3'-biacenaphthene will be 48.71% and selectivity, of that will be 78.56 %. Farther more, [bmim]Cl/FeCl3 has no pollution to environments and can be reused.
基金Supported by the National Natural Science Foundation of China (20901063) the Natural Science Foundation of Hubei Province (2011CDB221)
文摘In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SG n-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their catalytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG 2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Meanwhile, the optimal condition for the catalytic oxidation of SG 2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3:1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.
基金This work was supported by the National Natural Science Foundation of China(21272117,20972068)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The oxidative coupling of methylarenes and N,N-dialkylformamides was developed, and the appropriate reaction conditions were established. By using I2 as the catalyst, and tert-butyl hydroperoxide(TBHP) as the oxidant, the reaction provided N,N-dialkylamides or N-alkylamides with moderate yields via multiple sp3 C-H bonds activation of methylarenes in aqueous and metal-free conditions.