Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximati...Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.展开更多
The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled s...The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.展开更多
With progression of the digital age, the complexity of software continues to grow. AS a result, methods to quantitatively assess characteristics of software have attracted significant atten- tion. These efforts have l...With progression of the digital age, the complexity of software continues to grow. AS a result, methods to quantitatively assess characteristics of software have attracted significant atten- tion. These efforts have led to a large number of new measures such as coupling metrics, many of which seek to consider the impact of correlations between components and failures on ap- plication reliability. However, most of these approaches set the coupling parameters arbitrarily by making assumptions instead of utilizing experimental data and therefore may not accurately capture actual coupling between components of software applica- tion. Since the coupling matrix is often set arbitrarily, the existing approaches to assess software reliability considering component correlation fail to reflect the real degree of interaction and rela- tionships among software components. This paper presents an efficient approach to assess the software reliability considering Correlated component failures, incorporating software architec- ture while considering actual internal coupling of software with an efficient approach based on multivariate Bernoulli (MVB) distribu- tion. The unified framework for software Coupling measurement is' informed by a comprehensive survey of frameworks for object- oriented and procedure-oriented software. This framework enables the extraction of more accurate coupling among cornponents. The effectiveness of this method is illustrated through an exPerimental study bylapplying it to a real-time software application.展开更多
The lattice-parameter effects on the diffracted transmission of GaN square-lattice photonic crystals (2PhC) at the wavelength of 460 nm were studied by using a rigorous coupled wave analysis (RCWA). The impacts of...The lattice-parameter effects on the diffracted transmission of GaN square-lattice photonic crystals (2PhC) at the wavelength of 460 nm were studied by using a rigorous coupled wave analysis (RCWA). The impacts of lattice parameters on the diffracted transmission are calculated in the ranges for lattice pitch from 100 nm to 2000 nm, fill factor from 0.1 to 0.9 and grat- ing height from 100 nm to 1000 rim, respectively. Our simulation results confirm that the lattice pitch is the dominant factor of the diffraction. It determines how many orders of diffraction occur by the 2PhCs. The larger the lattice pitch, the higher the diffraction orders come into play. Moreover, besides the first-order Bragg diffraction, higher diffraction orders from large pitches of PhCs are also beneficial to the light extraction improvement. The higher enhancement factors of the integrated transmission were obtained from a wide range of pitches with micro-scale GaN 2PhCs. Three different diffraction mechanisms through wave vector analysis were used to discuss the simulation results.展开更多
文摘Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.
基金Project(51105375)supported by the National Natural Science Foundation of ChinaProject(CSTC2010BB8204)supported by Chongqing Natural Science Foundation,China
文摘The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.
基金supported by the National Aerospace Science Foundation of China(20140751008)
文摘With progression of the digital age, the complexity of software continues to grow. AS a result, methods to quantitatively assess characteristics of software have attracted significant atten- tion. These efforts have led to a large number of new measures such as coupling metrics, many of which seek to consider the impact of correlations between components and failures on ap- plication reliability. However, most of these approaches set the coupling parameters arbitrarily by making assumptions instead of utilizing experimental data and therefore may not accurately capture actual coupling between components of software applica- tion. Since the coupling matrix is often set arbitrarily, the existing approaches to assess software reliability considering component correlation fail to reflect the real degree of interaction and rela- tionships among software components. This paper presents an efficient approach to assess the software reliability considering Correlated component failures, incorporating software architec- ture while considering actual internal coupling of software with an efficient approach based on multivariate Bernoulli (MVB) distribu- tion. The unified framework for software Coupling measurement is' informed by a comprehensive survey of frameworks for object- oriented and procedure-oriented software. This framework enables the extraction of more accurate coupling among cornponents. The effectiveness of this method is illustrated through an exPerimental study bylapplying it to a real-time software application.
基金supported by the National Key Basic R&D Plan Projects (‘973’ Project) of China (Grant Nos.2007CB307004,2006CB921607)National Natural Science Foundation of China (Grant Nos.60776041,60976009,U0834001)
文摘The lattice-parameter effects on the diffracted transmission of GaN square-lattice photonic crystals (2PhC) at the wavelength of 460 nm were studied by using a rigorous coupled wave analysis (RCWA). The impacts of lattice parameters on the diffracted transmission are calculated in the ranges for lattice pitch from 100 nm to 2000 nm, fill factor from 0.1 to 0.9 and grat- ing height from 100 nm to 1000 rim, respectively. Our simulation results confirm that the lattice pitch is the dominant factor of the diffraction. It determines how many orders of diffraction occur by the 2PhCs. The larger the lattice pitch, the higher the diffraction orders come into play. Moreover, besides the first-order Bragg diffraction, higher diffraction orders from large pitches of PhCs are also beneficial to the light extraction improvement. The higher enhancement factors of the integrated transmission were obtained from a wide range of pitches with micro-scale GaN 2PhCs. Three different diffraction mechanisms through wave vector analysis were used to discuss the simulation results.