To obtain new functional aromatic polymer materiul. 3,3'-biacenaphthene, which is used as macromolecule intermediate of,funcrion aromatic polymer material, was synthesized through the coupling reaction of acenaphthen...To obtain new functional aromatic polymer materiul. 3,3'-biacenaphthene, which is used as macromolecule intermediate of,funcrion aromatic polymer material, was synthesized through the coupling reaction of acenaphthene catalyzing by ionic liquid ([bmim]CI/FeCl3) at mild reaction condition. Pure 3,3'-biacenaphthene was obtained hy recrystalling and column chromatography from the reaction mixture and was determined by GC/MS, SHNMR arid FTIR analysis. The influence of various reaction conditions on the yield of 3,3'-biacenaphthene were studied by GC analysis. The result shows that the optimun synthesis conditions of the coupling reaction are, as following: the molar ratio of FeCl3 to [BmimlCl being 3, the mole ratio of FeCl3 in [Bmim]Cl/FeCl3 to acenaphthene being 4. the reaction temperamre being 20 ℃ the reaction time being 4h and the solvent of the reaction system being PhNO2 Under those conditions, the yield of the 3.3'-biacenaphthene will be 48.71% and selectivity, of that will be 78.56 %. Farther more, [bmim]Cl/FeCl3 has no pollution to environments and can be reused.展开更多
基金National Natural Science Foundation of China (No. 20207003)
文摘To obtain new functional aromatic polymer materiul. 3,3'-biacenaphthene, which is used as macromolecule intermediate of,funcrion aromatic polymer material, was synthesized through the coupling reaction of acenaphthene catalyzing by ionic liquid ([bmim]CI/FeCl3) at mild reaction condition. Pure 3,3'-biacenaphthene was obtained hy recrystalling and column chromatography from the reaction mixture and was determined by GC/MS, SHNMR arid FTIR analysis. The influence of various reaction conditions on the yield of 3,3'-biacenaphthene were studied by GC analysis. The result shows that the optimun synthesis conditions of the coupling reaction are, as following: the molar ratio of FeCl3 to [BmimlCl being 3, the mole ratio of FeCl3 in [Bmim]Cl/FeCl3 to acenaphthene being 4. the reaction temperamre being 20 ℃ the reaction time being 4h and the solvent of the reaction system being PhNO2 Under those conditions, the yield of the 3.3'-biacenaphthene will be 48.71% and selectivity, of that will be 78.56 %. Farther more, [bmim]Cl/FeCl3 has no pollution to environments and can be reused.