In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-pha...In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.展开更多
The effects of different defects on optical properties and plasmon resonances properties of Au nanoshell arrays were investigated by using the finite-difference time-domain(FDTD) theory.It is found that the optical pr...The effects of different defects on optical properties and plasmon resonances properties of Au nanoshell arrays were investigated by using the finite-difference time-domain(FDTD) theory.It is found that the optical properties of the nanoshell arrays are strongly influenced by different defects.We show that when the hollow Au nanoshell arrays are placed in air,there is a wide photonic band gap(PBG) in the infrared region,but the band gap becomes narrower as we introduced different defects.Based on the distributions of electric field component E z and the total energy distribution of the electric and the magnetic field,we show that there exhibit dipoles field distributions for the plasmon mode at the long-wavelength edge of the band gap,but composite higher order modes are excited at the short-wavelength edge of the band gap.The plasmon resonant modes also can be controlled by introducing defects.展开更多
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period(No.2008BA-D94B09)the National Natural Science Foundation of China(No.30972289)
文摘In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.
基金supported by the Scientific Research Foundation of Hunan Provincial Education Department (Grant No.10C0658)the Natural Science Foundation of Hunan Provincial of China (Grant No.10JJ3088)+2 种基金the National Natural Science Foundation of China (Grant Nos.61107055 and 11164007)the Natural Science Foundation of Jiangsu Province of China (Grant No.BK2011229)the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No.10A026)
文摘The effects of different defects on optical properties and plasmon resonances properties of Au nanoshell arrays were investigated by using the finite-difference time-domain(FDTD) theory.It is found that the optical properties of the nanoshell arrays are strongly influenced by different defects.We show that when the hollow Au nanoshell arrays are placed in air,there is a wide photonic band gap(PBG) in the infrared region,but the band gap becomes narrower as we introduced different defects.Based on the distributions of electric field component E z and the total energy distribution of the electric and the magnetic field,we show that there exhibit dipoles field distributions for the plasmon mode at the long-wavelength edge of the band gap,but composite higher order modes are excited at the short-wavelength edge of the band gap.The plasmon resonant modes also can be controlled by introducing defects.