A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz cente...A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.展开更多
A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding bro...A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy.展开更多
文摘A 4-12GHz wideband power amplifier,using a balanced configuration with a strip line Lange coupler, is designed and fabricated. This power amplifier shows a maximum continuous wave output power of 29.5dBm at 8GHz center frequency with an associated gain of 8.5dB and a gain flatness of + /- 0.6dB in the 4-12GHz frequency range.
基金supported by the National Natural Science Foundation of China(Grant No.11125420)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘A numerically efficient broadband, range-dependent propagation model is proposed, which incorporates the Hamiltonian method into the coupled-mode model DGMCM. The Hamiltonian method is highly efficient for finding broadband eigenvalues, and DGMCM is an accurate model for range-dependent propagation in the frequency domain. Consequently, the proposed broadband model combining the Hamiltonian method and DGMCM has significant virtue in terms of both efficiency and accuracy. Numerical simulations are also provided. The numerical results indicate that the proposed model has a better performance over the broadband model using the Fourier synthesis and COUPLE, while retaining the same level of accuracy.