Landscape ecology provides new theoretical frameworks and methodologies for understanding complex ecological phenomena at multiple scales.Studies of landscape ecology focus on understanding the dynamics of eco-logical...Landscape ecology provides new theoretical frameworks and methodologies for understanding complex ecological phenomena at multiple scales.Studies of landscape ecology focus on understanding the dynamics of eco-logical patterns and processes,and highlight the integration of multiple disciplines.In this paper,we discussed the problems and challenges that landscape ecology is currently facing,emphasizing the limitations of current methods used to describe dynamic landscape patterns and processes.We suggested that the focus should be on the integration of ground-based observation,mobile monitoring,transect survey,and remote-sensing monitoring,as well as improved coupling of experimental and model simulations.In addition,we outlined the research frontiers in landscape ecology,including scaling,integrated pattern and process modeling,and regional synthesis.Lastly,a brief review of pat-tern-process-scale coupling studies in China was provided.We concluded by pointing out that pattern-process-scale interactions,correlations between natural,economic,and social processes,and the coupling of human and natural systems will be major research areas in landscape ecology in the future.展开更多
A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the norm...A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.展开更多
Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present ...Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.展开更多
A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Throug...A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.展开更多
A recently developed three-dimensional normal-mode model is adopted to investigate mode coupling around a seamount in a deep water environment. As indicated by the theoretical analysis and verified by the numerical re...A recently developed three-dimensional normal-mode model is adopted to investigate mode coupling around a seamount in a deep water environment. As indicated by the theoretical analysis and verified by the numerical results, strong mode coupling occurs at the edge of a seamount under certain conditions. Therefore, mode coupling is critical for the investigation of the acoustic field in the presence of a seamount. In addition, the issue regarding the number of sectors assuring convergence is also presented. This issue is important in a two-way coupled-mode approach, especially for solving three-dimensional problems, because the computational effort increases dramatically with the number of sectors in representing a varying bathymetry. The theoretical analysis as well as the numerical example in this paper shows that artificial diffraction lobes form in the event that uniform discretization is used with a horizontal step size greater than half of the acoustic wavelength. However, by using random discretization instead, such artificial diffraction lobes are diffused, resulting in a faster convergence rate.展开更多
基金Under the auspices of National Natural Science Foundation of China (No.40930528)State Forestry Administration of China (No.201004058)
文摘Landscape ecology provides new theoretical frameworks and methodologies for understanding complex ecological phenomena at multiple scales.Studies of landscape ecology focus on understanding the dynamics of eco-logical patterns and processes,and highlight the integration of multiple disciplines.In this paper,we discussed the problems and challenges that landscape ecology is currently facing,emphasizing the limitations of current methods used to describe dynamic landscape patterns and processes.We suggested that the focus should be on the integration of ground-based observation,mobile monitoring,transect survey,and remote-sensing monitoring,as well as improved coupling of experimental and model simulations.In addition,we outlined the research frontiers in landscape ecology,including scaling,integrated pattern and process modeling,and regional synthesis.Lastly,a brief review of pat-tern-process-scale coupling studies in China was provided.We concluded by pointing out that pattern-process-scale interactions,correlations between natural,economic,and social processes,and the coupling of human and natural systems will be major research areas in landscape ecology in the future.
基金jointly supported by the National Natural Science Foundation of China grant number 41875132The National Key Research and Development Program of China grant number 2018YFA0606003。
文摘A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.
基金supported by the National Natural Science Foundation of China(2009CB421407 and 2010CB950501)
文摘Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.
基金supported by the "Strategic Priority Research Program-Climate Change: Carbon Budget andRelated Issue" of the Chinese Academy of Sciences (Grant No.XDA-05110303)the National Basic Research Program of China(Grant Nos. 2010CB951703 and 2009CB421403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos. KZCX2-YW-Q11-01 and KZCX2-YW-BR-14)
文摘A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program's Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.
基金supported by the U.S. Office of Naval Research under Grant No N00014the National Natural Science Foundation of China under Grant No 10734100Research support from Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
文摘A recently developed three-dimensional normal-mode model is adopted to investigate mode coupling around a seamount in a deep water environment. As indicated by the theoretical analysis and verified by the numerical results, strong mode coupling occurs at the edge of a seamount under certain conditions. Therefore, mode coupling is critical for the investigation of the acoustic field in the presence of a seamount. In addition, the issue regarding the number of sectors assuring convergence is also presented. This issue is important in a two-way coupled-mode approach, especially for solving three-dimensional problems, because the computational effort increases dramatically with the number of sectors in representing a varying bathymetry. The theoretical analysis as well as the numerical example in this paper shows that artificial diffraction lobes form in the event that uniform discretization is used with a horizontal step size greater than half of the acoustic wavelength. However, by using random discretization instead, such artificial diffraction lobes are diffused, resulting in a faster convergence rate.