By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Th...In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.展开更多
We propose a cryptographic scheme based on spatiotemporal chaos of coupled map lattices (CIVIL) ,which is based on one-time pad. The structure of the cryptosystem determines that the progress in decryption implies t...We propose a cryptographic scheme based on spatiotemporal chaos of coupled map lattices (CIVIL) ,which is based on one-time pad. The structure of the cryptosystem determines that the progress in decryption implies the progress in exploring the dynamical behavior of spatiotemporal chaos in CML. A part of the initial condition of CML is used as a secret key, and the recovery of the secret key by exhaustive search is impossible due to the sensitivity to the initial condition in spatiotemporal chaos system. Specially the software implementation of the scheme is easy.展开更多
To promote/inhibit ice formation in the natural environment and industrial systems,the growth and evolution process of ice single-crystal nuclei were simulated using the phase field-lattice Boltzmann method(PF-LBM),an...To promote/inhibit ice formation in the natural environment and industrial systems,the growth and evolution process of ice single-crystal nuclei were simulated using the phase field-lattice Boltzmann method(PF-LBM),and the influence of a background flow field on the growth of single-crystal nucleus dendrites was also analyzed.The results show that the flow field makes dendrite growth asymmetric.The growth of dendrites is more developed on the upstream side than on the downstream side.The dendrite tip growth rate and tip radius are greater on the upstream side than on the downstream side.The solid phase ratio is greater with a background flow field than without one.The higher the flow velocity is,the more developed the dendrites on the upstream side,the faster the dendrites grow,and the higher the dendrite tip growth rate.The dendrites on the backflow side have a lower flow rate and a lower degree of supercooling than those on the upstream side,which inhibits the solidification process,the growth rate is slow,and the dendrites are underdeveloped.展开更多
In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained...In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).展开更多
Using cluster Monte Carlo method, we numerically investigate the coupling on the simple cubic lattice. We determine critical lines belong to the criticality in the XY model with nematic three-dimensional XY universali...Using cluster Monte Carlo method, we numerically investigate the coupling on the simple cubic lattice. We determine critical lines belong to the criticality in the XY model with nematic three-dimensional XY universality class in variable of θ (2θ) between the XY-ferromagnetic (nematic) and disordered states. Fhrthermore, the phase transition between the XY-ferromagnetic and the nematie states is found to be in the three-dimensional Ising universality class. The critical points are determined from the intersections of Binder ratios for various system sizes. With two sets of critical points obtained, we finally construct the phase diagram on the A-J plane.展开更多
Based on the Huybrechts' linear-combination operator,effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variationa...Based on the Huybrechts' linear-combination operator,effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory.The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength,but decreases with increasing the temperature and the distance of electrons,respectively;the absolute value of the effective potential increases with increasing the radius of the quantum dot,electron-phonon coupling strength and the distance of electrons,respectively,but decreases with increasing the temperature;the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron:the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower;the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state.展开更多
We have studied why PA (post-annealing) takes a long time to restore damaged crystallinity, which corresponds to repeat 10 10 times of lattice vibrations. Using a MD (molecular dynamics) simulation, we monitored t...We have studied why PA (post-annealing) takes a long time to restore damaged crystallinity, which corresponds to repeat 10 10 times of lattice vibrations. Using a MD (molecular dynamics) simulation, we monitored the time-series of the LRO (long-range order) parameter as LRO pattern, in the case of a type IIa diamond, from the beginning of ion impact by a sub-keV N2 beam implantation to a few nanoseconds, i.e., close to the feasible time limit for MD simulations. Due to the ion impact, the LRO parameter changed gradually from "LRO = 1" (crystal) to "LRO = 0" (amorphous), showing the so-called critical slowing-down phenomenon. However, since PA was started the LRO pattern was not unique. The LRO patterns were grouped into more than three types of phases and the transition between them was also found. From the viewpoint of statistical dynamics, such chaotic variations in the LRO pattern may present that the system is a GCM (globally coupled map) of a complex system in a closed system. A GCM composed of coupled oscillators develops slowly to exhibit several different phases or ‘chaotic itinerancy' over time. Therefore, the long duration required for PA may be attributable to the nature of a complex system.展开更多
The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,...The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,theapplied magnetic field,and the temperature all affect the specific heat of these superlattices.For both the ferromagneticand ferrimagnetic superlattices,the specific heat decreases with increasing the spin quantum number,the absolutevalue of interlayer exchange coupling,intralayer exchange coupling,and anisotropy,while it increases with increasingtemperature at low temperatures.When an applied magnetic field is enhanced,the specific heat decreases in the two-layerferromagnetic superlattice,while it is almost unchanged in the two-layer ferrimagnetic superlattice at low fieldrange at low temperatures.展开更多
In considering next-nearest neighbor (NNN) coupling, we numerically investigate the magnetoelastic instability in ring-shaped mesoscopic antiferromagnetic Heisenberg spin 1/2 systems with spin-phonon interaction. Th...In considering next-nearest neighbor (NNN) coupling, we numerically investigate the magnetoelastic instability in ring-shaped mesoscopic antiferromagnetic Heisenberg spin 1/2 systems with spin-phonon interaction. The results indicate that, for antiferromagnetic NNN coupling J2, there may be a critical value J2^c, at which the ground state is dimerized for arbitrary lattice spring constant and beyond and below which the magnetoelastic instability behavior is different from each other. The values of J2^c are irrelevant to the system size. For ferromagnetic NNN coupling, only continuous transition is present from dimerized phase to uniform phase as lattice spring constant is increased.展开更多
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975043, 10947166 and 10775037the Foundation of Bureau of Education, Hebei Province, China under Grant No. 2009108the Natural Science Foundation of Hebei Province, China under Grant No. A2008000564)
文摘In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China under Grant No. 2002055009
文摘We propose a cryptographic scheme based on spatiotemporal chaos of coupled map lattices (CIVIL) ,which is based on one-time pad. The structure of the cryptosystem determines that the progress in decryption implies the progress in exploring the dynamical behavior of spatiotemporal chaos in CML. A part of the initial condition of CML is used as a secret key, and the recovery of the secret key by exhaustive search is impossible due to the sensitivity to the initial condition in spatiotemporal chaos system. Specially the software implementation of the scheme is easy.
基金The National Key Research and Development Program of China(No.2020YFB1506203)。
文摘To promote/inhibit ice formation in the natural environment and industrial systems,the growth and evolution process of ice single-crystal nuclei were simulated using the phase field-lattice Boltzmann method(PF-LBM),and the influence of a background flow field on the growth of single-crystal nucleus dendrites was also analyzed.The results show that the flow field makes dendrite growth asymmetric.The growth of dendrites is more developed on the upstream side than on the downstream side.The dendrite tip growth rate and tip radius are greater on the upstream side than on the downstream side.The solid phase ratio is greater with a background flow field than without one.The higher the flow velocity is,the more developed the dendrites on the upstream side,the faster the dendrites grow,and the higher the dendrite tip growth rate.The dendrites on the backflow side have a lower flow rate and a lower degree of supercooling than those on the upstream side,which inhibits the solidification process,the growth rate is slow,and the dendrites are underdeveloped.
基金Supported by the Research Work of Liaoning Provincial Development of Education under Grant No. 2008670
文摘In this paper, we extend a (2+2)-dimensional continuous zero curvature equation to (2+2)-dimensional discrete zero curvature equation, then a new (2+2)-dimensional cubic Volterra lattice hierarchy is obtained. Fhrthermore, the integrable coupling systems of the (2+2)-dimensional cubic Volterra lattice hierarchy and the generalized Toda lattice soliton equations are presented by using a Lie algebraic system sl(4).
基金Supported by National Natural Science Foundation of China under Grant No. 10974180
文摘Using cluster Monte Carlo method, we numerically investigate the coupling on the simple cubic lattice. We determine critical lines belong to the criticality in the XY model with nematic three-dimensional XY universality class in variable of θ (2θ) between the XY-ferromagnetic (nematic) and disordered states. Fhrthermore, the phase transition between the XY-ferromagnetic and the nematie states is found to be in the three-dimensional Ising universality class. The critical points are determined from the intersections of Binder ratios for various system sizes. With two sets of critical points obtained, we finally construct the phase diagram on the A-J plane.
基金Supported by the Items of Institution of Higher Education Scientific Research of Inner Mongolia under Grant No. NJ101116
文摘Based on the Huybrechts' linear-combination operator,effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory.The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength,but decreases with increasing the temperature and the distance of electrons,respectively;the absolute value of the effective potential increases with increasing the radius of the quantum dot,electron-phonon coupling strength and the distance of electrons,respectively,but decreases with increasing the temperature;the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron:the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower;the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state.
文摘We have studied why PA (post-annealing) takes a long time to restore damaged crystallinity, which corresponds to repeat 10 10 times of lattice vibrations. Using a MD (molecular dynamics) simulation, we monitored the time-series of the LRO (long-range order) parameter as LRO pattern, in the case of a type IIa diamond, from the beginning of ion impact by a sub-keV N2 beam implantation to a few nanoseconds, i.e., close to the feasible time limit for MD simulations. Due to the ion impact, the LRO parameter changed gradually from "LRO = 1" (crystal) to "LRO = 0" (amorphous), showing the so-called critical slowing-down phenomenon. However, since PA was started the LRO pattern was not unique. The LRO patterns were grouped into more than three types of phases and the transition between them was also found. From the viewpoint of statistical dynamics, such chaotic variations in the LRO pattern may present that the system is a GCM (globally coupled map) of a complex system in a closed system. A GCM composed of coupled oscillators develops slowly to exhibit several different phases or ‘chaotic itinerancy' over time. Therefore, the long duration required for PA may be attributable to the nature of a complex system.
基金Supported by the Natural Science Foundation of Liaoning Province of China under Grant No.20062040
文摘The specific heats of both a two-layer ferromagnetic superlattice and a two-layer ferrimagnetic one arestudied.It is found that the spin quantum numbers,the interlayer and intralayer exchange couplings,the anisotropy,theapplied magnetic field,and the temperature all affect the specific heat of these superlattices.For both the ferromagneticand ferrimagnetic superlattices,the specific heat decreases with increasing the spin quantum number,the absolutevalue of interlayer exchange coupling,intralayer exchange coupling,and anisotropy,while it increases with increasingtemperature at low temperatures.When an applied magnetic field is enhanced,the specific heat decreases in the two-layerferromagnetic superlattice,while it is almost unchanged in the two-layer ferrimagnetic superlattice at low fieldrange at low temperatures.
文摘In considering next-nearest neighbor (NNN) coupling, we numerically investigate the magnetoelastic instability in ring-shaped mesoscopic antiferromagnetic Heisenberg spin 1/2 systems with spin-phonon interaction. The results indicate that, for antiferromagnetic NNN coupling J2, there may be a critical value J2^c, at which the ground state is dimerized for arbitrary lattice spring constant and beyond and below which the magnetoelastic instability behavior is different from each other. The values of J2^c are irrelevant to the system size. For ferromagnetic NNN coupling, only continuous transition is present from dimerized phase to uniform phase as lattice spring constant is increased.