A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key...A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.展开更多
A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the...A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.展开更多
We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation sche...We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.展开更多
A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by t...A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.展开更多
A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze...A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model. The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.展开更多
Using cluster Monte Carlo method, we numerically investigate the coupling on the simple cubic lattice. We determine critical lines belong to the criticality in the XY model with nematic three-dimensional XY universali...Using cluster Monte Carlo method, we numerically investigate the coupling on the simple cubic lattice. We determine critical lines belong to the criticality in the XY model with nematic three-dimensional XY universality class in variable of θ (2θ) between the XY-ferromagnetic (nematic) and disordered states. Fhrthermore, the phase transition between the XY-ferromagnetic and the nematie states is found to be in the three-dimensional Ising universality class. The critical points are determined from the intersections of Binder ratios for various system sizes. With two sets of critical points obtained, we finally construct the phase diagram on the A-J plane.展开更多
This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static behavior using the coupling between FEM (finite element method) and BEM (boundary element method). The repres...This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static behavior using the coupling between FEM (finite element method) and BEM (boundary element method). The representation of the pipe is made by MEF using one fmite element in the cylindrical panel formulated from the theory of equivalent discrete layers (Layerwise theory), proposed by J. N. Reddy. The soil is represented by elastic continum infimite or semi-infinite and modeled using boundary elements with special curved surface, associated with cylindrical panel used to represent the soil-structure interaction within the soil, especially at the contact surface with the pipe.展开更多
The research on ditching is indispensable for civil airplanes made in China to obtain the airworthiness certificates.The suction force effect in the ditching process is a hot and difficult research topic.In this paper...The research on ditching is indispensable for civil airplanes made in China to obtain the airworthiness certificates.The suction force effect in the ditching process is a hot and difficult research topic.In this paper,the explicit method is employed to solve the discrete Lagrangian finite element equations.The Eulerian finite volume method(FVM) is used to solve the Eulerian control equations;the fluid-solid coupling is realized through the general coupling method.The model of large civil airplane ditching is simulated by Dytran and the model test in tank is carried out in the same condition.Based on the analysis on the impacts and generation of the suction force and a numerical example,we obtain the accurate ditching pressure and pitch angle,as well as the results from the simulation and test.The estimated pressure and pitch angles are consistent with the results in the test.In the simulation,where the suction force is considered,the attitude-time history curve is very similar to the one of the tests,whereas the attitudes in the calculation without suction force is far different from the test.It can be concluded from the results that the suction force is the key impact in ditching calculation and can be simulated by general coupling method.In addition,different weight characteristics and different initial pitch angles both result in different pressures of ditching.展开更多
In order to investigate propagation regularity of hydraulic fractures in the mode of multi-well pads, numerical modeling of simultaneous hydraulic fracturing of multiple wells was conducted. The mathematical model was...In order to investigate propagation regularity of hydraulic fractures in the mode of multi-well pads, numerical modeling of simultaneous hydraulic fracturing of multiple wells was conducted. The mathematical model was established coupling rock deformation with fluid flow in the fractures and wellbores. And then the model was solved by displacement discontinuity method coupling with implicit level set method. The implicit method was based on fracture tip asymptotical solution and used to determine fracture growth length. Simulation results showed that when multiple wells were fractured simultaneously, adjacent fractures might propagate towards each other, showing an effect of attraction other than repulsion. Fracture spacing and well spacing had significant influence on the propagation path and geometry of multiple fractures. Furthermore, when multiple wells were fractured simultaneously, stress reversal regions had a large area, and stress reversal regions were distributed not only in the area between fractures but also on the outside of them. The area of stress reversal regions was related to fracture spacing and well spacing. Results indicated that multi-well fracturing induced larger area of stress reversal regions than one-well fracturing, which was beneficial to generating complex fracture network in unconventional reservoirs.展开更多
基金Projects (51175162, 50805045) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.
文摘A mathematical model of electromechanical coupling system for a planar inertial vibrating machine is built by setting up dynamical equations of discrete systems with a matrix methodology proposed. The substance of the transient behavior of the machine is unveiled by analyzing the results of the computer simulation to the model, and new methods are presented for diminishing the transient amplitude of the vibrating machine and improving the transient behavior. The reliable mathematical model is provided for intelligent control of the transient behavior of the equipment.
文摘We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.
基金Project(51005086)supported by the National Natural Science Foundation of ChinaProject(2010MS085)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(DMETKF2013008)supported by the Open Project of the State Key Laboratory of Digital Manufacturing Equipment and Technology,China
文摘A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.
基金Funded by the National Natural Science Foundation of China (No.59838300 No.59778021)
文摘A one-dimensional BOD-DO coupling model for water quality simulation is presented, which adopts Streeter-Phelps equations and the theory of back-propagation artificial neural network. The water quality data of Yangtze River in the Chongqing region in the year of 1989 are divided into 5 groups and used in the learning and testing courses of this model. The result shows that such model is feasible for water quality simulation and is more accurate than traditional models.
基金Supported by National Natural Science Foundation of China under Grant No. 10974180
文摘Using cluster Monte Carlo method, we numerically investigate the coupling on the simple cubic lattice. We determine critical lines belong to the criticality in the XY model with nematic three-dimensional XY universality class in variable of θ (2θ) between the XY-ferromagnetic (nematic) and disordered states. Fhrthermore, the phase transition between the XY-ferromagnetic and the nematie states is found to be in the three-dimensional Ising universality class. The critical points are determined from the intersections of Binder ratios for various system sizes. With two sets of critical points obtained, we finally construct the phase diagram on the A-J plane.
文摘This work deals with the analysis of soil-structure interaction modeling of pipeline problems in static behavior using the coupling between FEM (finite element method) and BEM (boundary element method). The representation of the pipe is made by MEF using one fmite element in the cylindrical panel formulated from the theory of equivalent discrete layers (Layerwise theory), proposed by J. N. Reddy. The soil is represented by elastic continum infimite or semi-infinite and modeled using boundary elements with special curved surface, associated with cylindrical panel used to represent the soil-structure interaction within the soil, especially at the contact surface with the pipe.
基金supported by the National Natural Science Foundation of China (Grant No. 10772013)the National Technology Research and Development Program of China (Grant No. 2012AA112201)the Aeronautical Science Foundation of China (Grant No. 20100251007)
文摘The research on ditching is indispensable for civil airplanes made in China to obtain the airworthiness certificates.The suction force effect in the ditching process is a hot and difficult research topic.In this paper,the explicit method is employed to solve the discrete Lagrangian finite element equations.The Eulerian finite volume method(FVM) is used to solve the Eulerian control equations;the fluid-solid coupling is realized through the general coupling method.The model of large civil airplane ditching is simulated by Dytran and the model test in tank is carried out in the same condition.Based on the analysis on the impacts and generation of the suction force and a numerical example,we obtain the accurate ditching pressure and pitch angle,as well as the results from the simulation and test.The estimated pressure and pitch angles are consistent with the results in the test.In the simulation,where the suction force is considered,the attitude-time history curve is very similar to the one of the tests,whereas the attitudes in the calculation without suction force is far different from the test.It can be concluded from the results that the suction force is the key impact in ditching calculation and can be simulated by general coupling method.In addition,different weight characteristics and different initial pitch angles both result in different pressures of ditching.
基金supported by the National Natural Science Foundation of China(Grant Nos.51234007&51490654)the National Science Foundation for Young Scientists of China(Grant No.51404291)+1 种基金Fundamental Research Funds for Central Universities(Grant Nos.14CX05024A&14CX02045A)Shandong Provincial Natural Science Foundation(Grant No.ZR2014EEQ010)
文摘In order to investigate propagation regularity of hydraulic fractures in the mode of multi-well pads, numerical modeling of simultaneous hydraulic fracturing of multiple wells was conducted. The mathematical model was established coupling rock deformation with fluid flow in the fractures and wellbores. And then the model was solved by displacement discontinuity method coupling with implicit level set method. The implicit method was based on fracture tip asymptotical solution and used to determine fracture growth length. Simulation results showed that when multiple wells were fractured simultaneously, adjacent fractures might propagate towards each other, showing an effect of attraction other than repulsion. Fracture spacing and well spacing had significant influence on the propagation path and geometry of multiple fractures. Furthermore, when multiple wells were fractured simultaneously, stress reversal regions had a large area, and stress reversal regions were distributed not only in the area between fractures but also on the outside of them. The area of stress reversal regions was related to fracture spacing and well spacing. Results indicated that multi-well fracturing induced larger area of stress reversal regions than one-well fracturing, which was beneficial to generating complex fracture network in unconventional reservoirs.