In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of ma...In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work.展开更多
The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime,i.e.,the both spatially homogenous,isotropic ...The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime,i.e.,the both spatially homogenous,isotropic FRW universe and static,spherically symmetric black hole spacetime.The field equations of the generalized f(R) gravity with arbitrary coupling between matter and geometry can be cast to the form of the first law of thermodynamics with the reputed entropy production terms dS,which are quite general and can degenerate to the cases of Einstein's general relativity and pure f(R) gravity with non-coupling and nonminimal coupling as special cases.The appearance of the entropy production term dS illustrates that the horizon thermodynamics is non-equilibrium one for the generalized f(R) gravity with arbitrary coupling between matter and geometry.展开更多
基金supported by the Special Funds for the National Basic Research Program of China (973 Project) (Grant No. 2010CB832702)the National Natural Science Foundation of China (Grant No. 90916027)also supported by NSAF (Grant No.10976004)
文摘In this paper,an atom-continuum coupled model for thermo-mechanical behaviors in micro-nano scales is presented.A representative volume element consisting of atom clusters is used to represent the microstructure of materials.The atom motions in the RVE are divided into two phases,structural deformations and thermal vibrations.For the structural deformations,nonlinear and nonlocal deformation at atomic scales is considered.The atomistic-continuum equations are constructed based on momentum and energy conservation law.The non-locality and nonlinearity of atomistic interactions are built into the thermo-mechanical constitutive equations.The coupled atomistic-continuum thermal-mechanical simulation process is also suggested in this work.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175077 and 11147150)the Natural Science Foundation of Liaoning Province(Grant Nos.20102124 and L2011189)
文摘The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime,i.e.,the both spatially homogenous,isotropic FRW universe and static,spherically symmetric black hole spacetime.The field equations of the generalized f(R) gravity with arbitrary coupling between matter and geometry can be cast to the form of the first law of thermodynamics with the reputed entropy production terms dS,which are quite general and can degenerate to the cases of Einstein's general relativity and pure f(R) gravity with non-coupling and nonminimal coupling as special cases.The appearance of the entropy production term dS illustrates that the horizon thermodynamics is non-equilibrium one for the generalized f(R) gravity with arbitrary coupling between matter and geometry.