期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
耦合混沌Hindmarsh-Rose神经元系统中相互作用诱导的周期解研究
1
作者 宋冬艳 沈嘉锋 +1 位作者 魏雪蕊 何志威 《数学的实践与认识》 北大核心 2020年第17期140-147,共8页
神经元细胞作为构成神经系统结构和功能的基本单位,在神经信号传输过程中具有非常重要的作用.采用Hindmarsh-Rose神经元模型,探究与细胞中钙离子浓度有关的一个恢复变量参数在神经元信号传递中的影响.研究表明,当改变恢复变量参数值时,... 神经元细胞作为构成神经系统结构和功能的基本单位,在神经信号传输过程中具有非常重要的作用.采用Hindmarsh-Rose神经元模型,探究与细胞中钙离子浓度有关的一个恢复变量参数在神经元信号传递中的影响.研究表明,当改变恢复变量参数值时,单个神经元会出现周期或混沌的放电行为,并且对该参数值变化比较敏感.此外,当单个神经元为混沌放电时,随着相互作用强度的变化,耦合神经元系统不仅会出现混沌放电行为,还会产生周期放电行为,周期解窗口和混沌解窗口交替出现.当恢复变量参数值不同时,周期解窗口的个数和周期解的性质明显不同.该结论表明,该恢复变量参数在调控神经元混沌放电和周期放电行为过程中扮演着非常重要的角色. 展开更多
关键词 非线性动力学 耦合神经元系统 混沌 周期解
原文传递
In- and Anti-transition of Firing Patterns Induced by Random Long-range Connections in Coupled Hindmarsh-Rose Neurons System 被引量:1
2
作者 王鹏 张季谦 任海林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期23-29,I0001,共8页
The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is ... The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed. 展开更多
关键词 In- and anti-transition Random long-range connection Firing pattern System size
下载PDF
Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with multiple delays 被引量:14
3
作者 SONG ZiGen XU Jian 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第5期893-904,共12页
In this paper,we investigate an inertial two-neural coupling system with multiple delays.We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation.Results show that the system... In this paper,we investigate an inertial two-neural coupling system with multiple delays.We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation.Results show that the system has a unique equilibrium as well as three equilibria for different values of coupling weights.The local asymptotic stability of the equilibrium point is studied using the corresponding characteristic equation.We find that multiple delays can induce the system to exhibit stable switching between the resting state and periodic motion.Stability regions with delay-dependence are exhibited in the parameter plane of the time delays employing the Hopf bifurcation curves.To obtain the global perspective of the system dynamics,stability and periodic activity involving multiple equilibria are investigated by analyzing the intersection points of the pitchfork and Hopf bifurcation curves,called the Bogdanov-Takens(BT)bifurcation.The homoclinic bifurcation and the fold bifurcation of limit cycle are obtained using the BT theoretical results of the third-order normal form.Finally,numerical simulations are provided to support the theoretical analyses. 展开更多
关键词 inertial two-neuron system multiple delays stability switches Bogdanov-Takens bifurcation multiple stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部