本文采用X2C(exact two-component)哈密顿量,结合我们最近发展的含旋轨耦合的运动方程耦合簇方法,在EOM-CCSD级别上,用接近完备的基函数计算了一系列闭壳层原子体系的最低单重和三重激发能以及激发态的旋轨耦合分裂能.结果显示,对于IIA...本文采用X2C(exact two-component)哈密顿量,结合我们最近发展的含旋轨耦合的运动方程耦合簇方法,在EOM-CCSD级别上,用接近完备的基函数计算了一系列闭壳层原子体系的最低单重和三重激发能以及激发态的旋轨耦合分裂能.结果显示,对于IIA族原子、IIB族原子、IIIA族阳离子以及稀有气体原子,本文计算得到的激发能与实验值差别通常在0.1 e V以内.对于IB族正离子,由于CCSD方法对其基态存在较大误差,因此激发能被显著高估.对于激发态的旋轨耦合分裂能,前五周期IIA族原子、IIB族原子、IIIA族阳离子计算结果与实验结果吻合非常好,差别通常在1%以内.对于第六周期体系,这个方法得到的激发态旋轨耦合分裂能与实验比有一定误差,这可能是由于求解Hartree-Fock方程时忽略了旋轨耦合所导致.对惰性气体原子,即使是较轻元素,这个方法给出的旋轨耦合分裂能与实验值也有一定差别.展开更多
We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation sche...We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.展开更多
应用基于B样条基组的相对论耦合簇理论方法,计算了^(212)Fr原子的n S (n=7—12), n P (n=7—12)和n D (n=6—11)态的磁偶极超精细结构常数.与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数,其中7P态的磁偶极超精...应用基于B样条基组的相对论耦合簇理论方法,计算了^(212)Fr原子的n S (n=7—12), n P (n=7—12)和n D (n=6—11)态的磁偶极超精细结构常数.与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数,其中7P态的磁偶极超精细常数的理论值与实验值之间的差异小于1%.在忽略场移效应对Fr原子7P态超精细结构常数的影响下,通过结合实验值进一步定出了^(207-213,220-228)Fr核磁偶极矩μ,这些值与已有的测量值具有非常好的一致性.本文报道了12S, n P (n=9—12)和n D (n=10—11)态的磁偶极超精细结构常数.展开更多
Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies an...Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies and Raman spectra of various MH clusters.For the GEBF binding energies of various MH clusters,we first evaluated the various functionals of density functional theory(DFT),and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections[CCSD(T)(F12^(*))]method.Our results show that the two best functionals are B3PW91-D3 and B97D,with mean absolute errors of only 0.27 and 0.47 kcal/mol,respectively.Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono-and double-cages.Our results show that the B3PW91-D3 functional can well reproduce the experimental C-H stretching Raman spectra of methane in MH crystals,with errors less than 3 cm^(-1).As the size of the water cages increased,the C-H stretching Raman spectra exhibited a redshift,which is also in agreement with the experimental“loose cage-tight cage”model.In addition,the Raman spectra are only slightly affected by the neighboring environment(cages)of methane.The blueshifts of C-H stretching frequencies are no larger than 3 cm^(-1) for CH_(4) from monocages to doublecages.The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies.Based on the B3PW91-D3 or B97D functional and machine learning models,molecular dynamics simulations could be applied to the nucleation and growth mechanisms,and the phase transitions of methane hydrates.展开更多
By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a...By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.展开更多
基金supported by the Start-up Funds of Xi'an Polytechnic University,China(BS1211)Scientific Research Program Funded by Shaanxi Provincial Education Department,China(2013JK0679)~~
文摘本文采用X2C(exact two-component)哈密顿量,结合我们最近发展的含旋轨耦合的运动方程耦合簇方法,在EOM-CCSD级别上,用接近完备的基函数计算了一系列闭壳层原子体系的最低单重和三重激发能以及激发态的旋轨耦合分裂能.结果显示,对于IIA族原子、IIB族原子、IIIA族阳离子以及稀有气体原子,本文计算得到的激发能与实验值差别通常在0.1 e V以内.对于IB族正离子,由于CCSD方法对其基态存在较大误差,因此激发能被显著高估.对于激发态的旋轨耦合分裂能,前五周期IIA族原子、IIB族原子、IIIA族阳离子计算结果与实验结果吻合非常好,差别通常在1%以内.对于第六周期体系,这个方法得到的激发态旋轨耦合分裂能与实验比有一定误差,这可能是由于求解Hartree-Fock方程时忽略了旋轨耦合所导致.对惰性气体原子,即使是较轻元素,这个方法给出的旋轨耦合分裂能与实验值也有一定差别.
文摘We investigate the ground-state properties of the Anderson single impurity model (finite Coulomb impurity repulsion) with the Coupled Cluster Method. We consider different CCM reference states and approximation schemes and make comparison with exact Green's function results for the non-interacting model and with Brillouin-Wigner perturbation theory for the full interacting model. Our results show that coupled cluster techniques are well suited to quantum impurity problems.
文摘应用基于B样条基组的相对论耦合簇理论方法,计算了^(212)Fr原子的n S (n=7—12), n P (n=7—12)和n D (n=6—11)态的磁偶极超精细结构常数.与精确实验值的比较说明这套理论方法能精确计算出磁偶极超精细结构常数,其中7P态的磁偶极超精细常数的理论值与实验值之间的差异小于1%.在忽略场移效应对Fr原子7P态超精细结构常数的影响下,通过结合实验值进一步定出了^(207-213,220-228)Fr核磁偶极矩μ,这些值与已有的测量值具有非常好的一致性.本文报道了12S, n P (n=9—12)和n D (n=10—11)态的磁偶极超精细结构常数.
基金supported by the National Natural Science Foundation of China(No.22033004,No.21833002,No.21873046,and No.22073043)the Natural Science Foundation of Jiangsu Province(No.BK20210175)。
文摘Methane hydrates(MHs)play important roles in the fields of chemistry,energy,environmental sciences,etc.In this work,we employ the generalized energy-based fragmentation(GEBF)approach to compute the binding energies and Raman spectra of various MH clusters.For the GEBF binding energies of various MH clusters,we first evaluated the various functionals of density functional theory(DFT),and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections[CCSD(T)(F12^(*))]method.Our results show that the two best functionals are B3PW91-D3 and B97D,with mean absolute errors of only 0.27 and 0.47 kcal/mol,respectively.Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono-and double-cages.Our results show that the B3PW91-D3 functional can well reproduce the experimental C-H stretching Raman spectra of methane in MH crystals,with errors less than 3 cm^(-1).As the size of the water cages increased,the C-H stretching Raman spectra exhibited a redshift,which is also in agreement with the experimental“loose cage-tight cage”model.In addition,the Raman spectra are only slightly affected by the neighboring environment(cages)of methane.The blueshifts of C-H stretching frequencies are no larger than 3 cm^(-1) for CH_(4) from monocages to doublecages.The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies.Based on the B3PW91-D3 or B97D functional and machine learning models,molecular dynamics simulations could be applied to the nucleation and growth mechanisms,and the phase transitions of methane hydrates.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10804053 and 61203147the Natural Science Foundation of Jiangsu Province under Grant No.BK20131428+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No.13KJD140003the Scientific Research Foundation of Nanjing University of Posts and Telecommunications under Grant No.NY211008Qing Lan Project of Jiangsu Province
文摘By using the coupled duster method and the numerical density matrix renormalization group method, we investigate the properties of the quantum plateau state in an alternating Heisenberg spin chain. In the absence of a magnetic field, the results obtained from the coupled cluster method and density matrix renormalization group method both show that the ground state of the aiternating chain is a gapped dimerized state when the parameter a exceeds a critical point ac. The value of the critical points can be determined precisely by a detailed investigation of the behavior of the spin gap. The system therefore possesses an m = 0 plateau state in the presence of a magnetic field When a 〉 ac. In addition to the m = 0 plateau state, the results of density matrix renormaiization group indicate that there is an m = 1/4 plateau state that occurs between two critical fields in the alternating chain if a 〉 1. The mechanism for the m = 1/4 plateau state and the critical behavior of the magnetization as one approaches this plateau state are also discussed.