Coupled effects on a single point mooring(SPM) system subjected to the combined action of wind,waves and current are studied in this paper. Due to the complicatedness of the sea state and the huge size of the vessel,p...Coupled effects on a single point mooring(SPM) system subjected to the combined action of wind,waves and current are studied in this paper. Due to the complicatedness of the sea state and the huge size of the vessel,physical experimental study is both time consuming and uneconomical,whereas the numerical study is cost-effective and DNV software provides powerful SESAM software in solving the issues. This paper focuses on the modeling process of the SPM system,catenary equilibrium calculation,static analysis of the vessel in three different scenarios,and dynamic response simulation of the SPM system under environmental excitations. The three scenarios in study are as follows:the SPM is under the combined function of(a) wind,waves and current,(b) wind and waves,(c) current and waves. They are so set that one can compare the contributions of different types of loads in both static and dynamic studies. Numerical study shows that wind and current are the two major factors contributing to the mooring line tension,and surge and sway are the two dominant motions of the moored vessel subjected to environmental excitations.展开更多
We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near r...We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near resonance cases when Ω 〈 0.3ωa with Ω and ωa denoting the Rabi and transition frequencies respectively.展开更多
The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled s...The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.展开更多
A new full time-domain nonlinear coupled method has been established and then applied to predict the responses of a Truss Spar in irregular wave. For the coupled analysis, a second-order time-domain approach is develo...A new full time-domain nonlinear coupled method has been established and then applied to predict the responses of a Truss Spar in irregular wave. For the coupled analysis, a second-order time-domain approach is developed to calculate the wave forces, and a finite element model based on rod theory is established in three dimensions in a global coordinate system. In nu- merical implementation, the higher-order boundary element method (HOBEM) is employed to solve the velocity potential, and the 4th-order Adams-Bashforth-Moultn scheme is used to update the second-order wave surface. In deriving convergent solu- tions, the hull displacements and mooring tensions are kept consistent at the fairlead and the motion equations of platform and mooring-lines/risers are solved simultaneously using Newmark-fl integration scheme including Newton-Raphson iteration. Both the coupled quasi-static analysis and the coupled dynamic analysis are performed. The numerical simulation results are also compared with the model test results, and they coincide very well as a whole. The slow-drift responses can be clearly ob- served in the time histories of displacements and mooring tensions. Some important characteristics of the coupled responses are concluded.展开更多
False monitoring information is a major problem in process production system and several ineffective methods have been proposed to identify false monitoring information in the production system. In this paper, a new m...False monitoring information is a major problem in process production system and several ineffective methods have been proposed to identify false monitoring information in the production system. In this paper, a new method is proposed to identify false monitoring information based on system coupling analysis and collision detection from the perspective of data analysis. Coupling multifractal features are extracted to reflect the changes in coupling relationship by utilizing the multifractal detrended cross-correlation analysis (MF-DXA). Each monitoring variable in process production system has more than one coupled variable, which can be regarded as multi-source. To achieve low redundancy in features and uniform description of coupling relationship, the feature level information fusion is studied based on modified Mahalanobis Taguchi system (MTS). False alarms are identified when the coupling relationships among the coupled monitoring variables collide. Analysis results of coupled R?ssler and Henon datasets indicate the feasibility of this method for selecting the effective coupling feature and uniform description of coupling relationship. The compressor system case of Coal Chemical Ltd. Group is studied and false monitoring information is identified.展开更多
An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastles...An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastless track and bridge are treated as a coupled vibration system with interaction.By simulating the dynamic process of the system,this paper discusses the distribution law of dynamic responses of the bridge deck and the bed slab.It shows the necessity of a base plate for the ballastless track on the long-span plate-truss cable-stayed bridge.Comparison of the influence of different train speeds and stiffness of the elastic vibration-damping pad on the dynamic responses of the bridge deck and the bed slab is also made.The reasonable stiffness value of elastic vibration-damping pad is proposed.展开更多
A coupled neural system with multiple delays has been investigated. The number of equilibrium points is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values...A coupled neural system with multiple delays has been investigated. The number of equilibrium points is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values of coupling weight by employing the pitchfork bifurcation of the trivial equilibrium point. Further, the local asymptotical stability of the trivial equilibrium point is studied by analyzing the corresponding characteristic equation. Some stability criteria involving multiple delays and coupling weight are obtained. The results show that the neural system exhibits the delay-independent and delay-dependent stability. Increasing delay induces stability switching between resting state and periodic motion in some parameter regions of coupling weight. In addition, the criterion for the global stability of the trivial equilibrium is also derived by constructing a suitable Lyapunov functional. Finally, some numerical simulations are taken to support the theoretical results.展开更多
基金This work has been financially supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China under Grant No.704031by the Natural Science Foundation of Qingdao,Grant No.05-2-JC-88.
文摘Coupled effects on a single point mooring(SPM) system subjected to the combined action of wind,waves and current are studied in this paper. Due to the complicatedness of the sea state and the huge size of the vessel,physical experimental study is both time consuming and uneconomical,whereas the numerical study is cost-effective and DNV software provides powerful SESAM software in solving the issues. This paper focuses on the modeling process of the SPM system,catenary equilibrium calculation,static analysis of the vessel in three different scenarios,and dynamic response simulation of the SPM system under environmental excitations. The three scenarios in study are as follows:the SPM is under the combined function of(a) wind,waves and current,(b) wind and waves,(c) current and waves. They are so set that one can compare the contributions of different types of loads in both static and dynamic studies. Numerical study shows that wind and current are the two major factors contributing to the mooring line tension,and surge and sway are the two dominant motions of the moored vessel subjected to environmental excitations.
基金The project supported by the Postdoctoral Science Foundation of China under Grant Nos.20060408878 and 2007RS4015Key Science Research Foundation of the Education Ministry of China,Natural Science Foundation of Hunan Province of China under Grant No.05JJ40007Key Science Research Foundation of the Education Department of Hunan Province under Grant No.07A057
文摘We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near resonance cases when Ω 〈 0.3ωa with Ω and ωa denoting the Rabi and transition frequencies respectively.
基金Project(51105375)supported by the National Natural Science Foundation of ChinaProject(CSTC2010BB8204)supported by Chongqing Natural Science Foundation,China
文摘The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate(HSP) by applying Green function method.Then an equivalent circuit model of the weakly-strongly coupled system was proposed.Based on that,the estimation formulae of the coupled eigenfrequency were derived.The accuracy of the theoretical predictions was checked against experimental data,with good agreement achieved.Finally,the effects of HSP design parameters on the system coupling degree,the acoustic cavity eigenfrequency,and sound pressure response were analyzed.The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.
基金supported by the National High Technology Research and Development Program of China(Grant No.2006AA09A109-3)the Important National Science&Technology Specific Projects(Grant No.2008ZX05026-06-02)
文摘A new full time-domain nonlinear coupled method has been established and then applied to predict the responses of a Truss Spar in irregular wave. For the coupled analysis, a second-order time-domain approach is developed to calculate the wave forces, and a finite element model based on rod theory is established in three dimensions in a global coordinate system. In nu- merical implementation, the higher-order boundary element method (HOBEM) is employed to solve the velocity potential, and the 4th-order Adams-Bashforth-Moultn scheme is used to update the second-order wave surface. In deriving convergent solu- tions, the hull displacements and mooring tensions are kept consistent at the fairlead and the motion equations of platform and mooring-lines/risers are solved simultaneously using Newmark-fl integration scheme including Newton-Raphson iteration. Both the coupled quasi-static analysis and the coupled dynamic analysis are performed. The numerical simulation results are also compared with the model test results, and they coincide very well as a whole. The slow-drift responses can be clearly ob- served in the time histories of displacements and mooring tensions. Some important characteristics of the coupled responses are concluded.
基金supported by the National Natural Science Foundation of China (Grant No. 51375375)
文摘False monitoring information is a major problem in process production system and several ineffective methods have been proposed to identify false monitoring information in the production system. In this paper, a new method is proposed to identify false monitoring information based on system coupling analysis and collision detection from the perspective of data analysis. Coupling multifractal features are extracted to reflect the changes in coupling relationship by utilizing the multifractal detrended cross-correlation analysis (MF-DXA). Each monitoring variable in process production system has more than one coupled variable, which can be regarded as multi-source. To achieve low redundancy in features and uniform description of coupling relationship, the feature level information fusion is studied based on modified Mahalanobis Taguchi system (MTS). False alarms are identified when the coupling relationships among the coupled monitoring variables collide. Analysis results of coupled R?ssler and Henon datasets indicate the feasibility of this method for selecting the effective coupling feature and uniform description of coupling relationship. The compressor system case of Coal Chemical Ltd. Group is studied and false monitoring information is identified.
基金supported by the National Natural Science Foundation of China(Grant No.NNSF-U1334201)the National Basic Research Program of China("973"Project)(Grant No.2013CB036206)the Sichuan Province Youth Science and Technology Innovation Team(Grant No.2015TD0004)
文摘An analytical model is presented to study vertical dynamic response of the ballastless track on long-span plate-truss cable-stayed bridges based on an explicit dynamic analysis method.In the model,the train,ballastless track and bridge are treated as a coupled vibration system with interaction.By simulating the dynamic process of the system,this paper discusses the distribution law of dynamic responses of the bridge deck and the bed slab.It shows the necessity of a base plate for the ballastless track on the long-span plate-truss cable-stayed bridge.Comparison of the influence of different train speeds and stiffness of the elastic vibration-damping pad on the dynamic responses of the bridge deck and the bed slab is also made.The reasonable stiffness value of elastic vibration-damping pad is proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11202068&11572224)the University Key Teacher Foundation for Youths of Henan Province(Grant No.2014GGJS-076)the Key Technologies Research Project of Henan Province(Grant No.152102210089)
文摘A coupled neural system with multiple delays has been investigated. The number of equilibrium points is analyzed. It implies that the neural system exhibits a unique equilibrium and three ones for the different values of coupling weight by employing the pitchfork bifurcation of the trivial equilibrium point. Further, the local asymptotical stability of the trivial equilibrium point is studied by analyzing the corresponding characteristic equation. Some stability criteria involving multiple delays and coupling weight are obtained. The results show that the neural system exhibits the delay-independent and delay-dependent stability. Increasing delay induces stability switching between resting state and periodic motion in some parameter regions of coupling weight. In addition, the criterion for the global stability of the trivial equilibrium is also derived by constructing a suitable Lyapunov functional. Finally, some numerical simulations are taken to support the theoretical results.