The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-a...The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.展开更多
One of the most important causes of the freshwater shortage in estuarine area is the increasing seawater intrusion into the river.To simulate seawater intrusion properly,two important factors should be considered.One ...One of the most important causes of the freshwater shortage in estuarine area is the increasing seawater intrusion into the river.To simulate seawater intrusion properly,two important factors should be considered.One is the bidirectional and time-dependent coupling effects between river discharges and tidal forces.The other is the three-dimensional and stratified structure of dynamic processes involved.However,these two factors have rarely been investigated simultaneously,or they were often simplified in previous researches,especially for the estuary connected with an upstream river network through multiple outlets such as the Pearl River Estuary(PRE).In order to consider these two factors,a numerical modeling system,which couples a one-dimensional river network model with a three-dimensional unstructured-grid Finite-Volume Coastal Ocean Model(FVCOM),has been developed and successfully applied to the simulation of seawater intrusion into rivers emptying into the PRE.By treating the river network with a one-dimensional model,computational efficiency has been improved.With coupling 1D and 3D models,the specification of upstream boundary conditions becomes more convenient.Simulated results are compared with field measured data.Good agreement indicates that the modeling system may correctly capture the physical processes of seawater intrusion into rivers.展开更多
As multistage gear transmission systems are complex and precise, the flexibility of shaft can influence the dynamic response of system. In order to study dynamic response of the system, we build the rigid model of gea...As multistage gear transmission systems are complex and precise, the flexibility of shaft can influence the dynamic response of system. In order to study dynamic response of the system, we build the rigid model of gear system and the finite element model of the gear shaft. virtual prototype technology, and a contrast between rigid The rigid-flex coupling model is established with the model and rigid-flex coupling model is constructed. With these methods, the dynamic responses with different rotation speeds and different loading magnitudes are examined. We also analyze the influence of shaft flexibility, rotation speeds and loading magnitudes on the vibration characteristics of gear transmission systems.展开更多
基金supported by the Public Science and Technology Research Funds Projects of Ocean 201105018the National Natural Science Foundation of China 41106023
文摘The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport(COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa(2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.
基金supported by the Non-profit Industry Financial Program from the Ministry of Water Resources of the People’s Republic of China (No 200901032)
文摘One of the most important causes of the freshwater shortage in estuarine area is the increasing seawater intrusion into the river.To simulate seawater intrusion properly,two important factors should be considered.One is the bidirectional and time-dependent coupling effects between river discharges and tidal forces.The other is the three-dimensional and stratified structure of dynamic processes involved.However,these two factors have rarely been investigated simultaneously,or they were often simplified in previous researches,especially for the estuary connected with an upstream river network through multiple outlets such as the Pearl River Estuary(PRE).In order to consider these two factors,a numerical modeling system,which couples a one-dimensional river network model with a three-dimensional unstructured-grid Finite-Volume Coastal Ocean Model(FVCOM),has been developed and successfully applied to the simulation of seawater intrusion into rivers emptying into the PRE.By treating the river network with a one-dimensional model,computational efficiency has been improved.With coupling 1D and 3D models,the specification of upstream boundary conditions becomes more convenient.Simulated results are compared with field measured data.Good agreement indicates that the modeling system may correctly capture the physical processes of seawater intrusion into rivers.
基金the National Natural Science Foundation of China(No.71401173)
文摘As multistage gear transmission systems are complex and precise, the flexibility of shaft can influence the dynamic response of system. In order to study dynamic response of the system, we build the rigid model of gear system and the finite element model of the gear shaft. virtual prototype technology, and a contrast between rigid The rigid-flex coupling model is established with the model and rigid-flex coupling model is constructed. With these methods, the dynamic responses with different rotation speeds and different loading magnitudes are examined. We also analyze the influence of shaft flexibility, rotation speeds and loading magnitudes on the vibration characteristics of gear transmission systems.