Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using...Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.展开更多
A new method is presented to tune Bragg wavelength slightly by using hydrofluoric acid to etch fiber cladding.The spectral characteristics before and after etching and the change properties of Bragg wavelength are stu...A new method is presented to tune Bragg wavelength slightly by using hydrofluoric acid to etch fiber cladding.The spectral characteristics before and after etching and the change properties of Bragg wavelength are studied.Cladding modes are reduced during the etching process.High-order cladding modes are converted into radiation modes,and energy of cladding modes is coupled to the outside.As the cladding radius decreases,the Bragg wavelength shifts to longer direction.Experimental results show that this method can tune Bragg wavelength slightly,and the tunable range is 0.002-0.120 nm.展开更多
Based on digital signal processing theory,a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure.The method is simple and effec...Based on digital signal processing theory,a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure.The method is simple and effective,and it can be used to implement the designing of the optical notch filter which has arbitrary number of notch points in one free spectrum range(FSR).A design example of notch filter based on cascaded single-fiber-rings is given.On this basis,an improved cascaded double-fiber-rings structure is presented to eliminate the effect of phase shift caused by the single-fiber-ring structure.This new structure can improve the stability and applicability of system.The change of output intensity spectrum is finally investigated for each design parameter and the tuning characteristics of the notch filter are also discussed.展开更多
基金The National Natural Science Foundation of China(No.40902076)the Natural Science Foundation of Jiangsu Province(No.BK20141224)
文摘Considering the coupled heat transfer effect induced by parallel cross-river road tunnels, the long-term soil temperature variations of shallow sections of cross-river tunnels under the river beach are predicted using the finite difference method for numerical simulation. The boundary conditions and the initial values are determined by in situ observations and numerical iterations.The simulation results indicate that the ultimate calculated steady heat transfer time is 68 years, and most of the heat transfer is completed in 20 years.The initial constant temperature soil surrounding the tunnels is transformed to an annually variable one.An obvious temperature-varying region of the surrounding soil is discovered within 5 m from the tunnel exterior, as well as within the entire range of soil between the two tunnels.The maximum temperature increase value reaches 7.14 ℃ and the maximum peak-to-valley value of annual temperature increase reaches 10 ℃.The temperature variation of soils surrounding tunnels below 10 m is completely controlled by the heat transfer from the tunnels.The coupled heat transfer effect is confirmed because the ultimate steady temperature of soil between the two tunnels is higher than the ones along other positions.Moreover, the regression model comprising a series of univariate functions is proposed for the annual soil temperature fluctuation estimation for the locations varied distances around the tunnel.This investigation is beneficial to gain an insight into the long-term variation tendencies of local engineering geological conditions of the river beach above shallow sections of the cross-river road tunnels.
基金supported by the National Natural Science Foundation of China (Nos.60837002 and 61177069)the Ph.D. Programs Foundation of Ministry of Education of China (No.20090009110003)the Fundamental Research Funds for the Central Universities (No.2011YJS219)
文摘A new method is presented to tune Bragg wavelength slightly by using hydrofluoric acid to etch fiber cladding.The spectral characteristics before and after etching and the change properties of Bragg wavelength are studied.Cladding modes are reduced during the etching process.High-order cladding modes are converted into radiation modes,and energy of cladding modes is coupled to the outside.As the cladding radius decreases,the Bragg wavelength shifts to longer direction.Experimental results show that this method can tune Bragg wavelength slightly,and the tunable range is 0.002-0.120 nm.
基金supported by the National Natural Science Foundation of China (No.10804070)the Innovation Program of Shanghai Municipal Education Commission (No.09YZ06)Shanghai Leading Academic Discipline Project (No.S30108)
文摘Based on digital signal processing theory,a novel method of designing optical notch filter is proposed for Mach-Zehnder interferometer with cascaded optical fiber rings coupled structure.The method is simple and effective,and it can be used to implement the designing of the optical notch filter which has arbitrary number of notch points in one free spectrum range(FSR).A design example of notch filter based on cascaded single-fiber-rings is given.On this basis,an improved cascaded double-fiber-rings structure is presented to eliminate the effect of phase shift caused by the single-fiber-ring structure.This new structure can improve the stability and applicability of system.The change of output intensity spectrum is finally investigated for each design parameter and the tuning characteristics of the notch filter are also discussed.