This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ...An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.展开更多
An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution,...An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution, the detailed parameters at lower level can be defined into the independent axiom. The suspension design was used as the simulation example. In an axiomatic design for the optimization design, the uncoupled and decoupled designs between functional requirements and design parameters are generally needed. But using the design sensitivity(or screening) of design parameters, the approximate uncoupled design is developed on behalf of the decoupled and coupled designs. Successive design parameters were applied to the suspension of torsion beam axle. The structural performance increases by 18%. The kinematic and compliance performance increases by 6% within the feasible ranges.展开更多
The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compar...The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point.展开更多
Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPC...Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPCC-Special Report in Emission Scenarios (SRES) A2 and B2 scenario. We examined their ability in simulating the interdecadal variations of summer precipitation over China from 1951 to 1990. The difference before and after the mid-1960’s and the late 1970’s is given respectively to check the capability of the models, especially in reproducing the rainfall jump in North China. We also investigated the interdecadal variations simulated by the models in the 1990’s and the average of 2001-2020 in the future under the scenario A2 and B2. The analysis shows that the current AOGCMs is not good enough in simulating the interdecadal variations of summer precipitation in China. The interdecadal variations of summer rainfall simulated by most of the models cannot reproduce the observation in North China. Higher resolution models are suggested to well simulate the interdecadal variability in regional scale.展开更多
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical ...The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical energy analysis(SEA). The modal analysis method is used to discuss the vibration energy of the typical model, as well as the power flow between the two subsystems. Furthermore, the resolution to the coupling loss factor is also derived and compared with the measured values. The analytical results of the coupling loss factor agree with the measured ones fully, this new resolution is significant for the application of SEA.展开更多
This paper assesses the interannual variabilities of simulated sea surface salinity(SSS)and freshwater flux(FWF)in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6)...This paper assesses the interannual variabilities of simulated sea surface salinity(SSS)and freshwater flux(FWF)in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).The authors focus on comparing the simulated SSS and FWF responses to El Nino–Southern Oscillation(ENSO)from two generations of models developed by the same group.The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO,as well as their relationship.It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models.In particular,CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific.In addition,CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability(spatial distribution and intensity)in the tropical Pacific.However,as a whole,CMIP6 models do not show improved skill scores for SSS interannual variability,which is due to their overestimation of the intensity in some models.Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.展开更多
Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha...Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.展开更多
A measurement system with the CCD matrix and computer system is designed to test the 2D size of any shape workpieces automatically. In addition, the system adopts the method of the relative measurement which increases...A measurement system with the CCD matrix and computer system is designed to test the 2D size of any shape workpieces automatically. In addition, the system adopts the method of the relative measurement which increases the precision and the velocity.More importantly,the precision cant be changed with the conditions of the temperature and air pressure.The experiments show that the relative precision of 0.002 9 and the absolute precision of 2.97 μm are obtained. The instrument may be used in the product line and make the testing on line possible.展开更多
A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling rati...A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time saving. So it is promising in the field of both investigation and application.展开更多
We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the v...We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.展开更多
Gravitational contributions to the running of gauge couplings are calculated by using different regularizationschemes.As the β function concerns counter-terms of dimension four, only quadratic divergences from the gr...Gravitational contributions to the running of gauge couplings are calculated by using different regularizationschemes.As the β function concerns counter-terms of dimension four, only quadratic divergences from the gravitationalcontributions need to be investigated.A consistent result is obtained by using a symmetry-preserving loop regularizationwith string-mode regulators which can appropriately treat the quadratic divergences and preserve non-abelian gaugesymmetry.The harmonic gauge condition for gravity is used in both diagrammatical and background field calculations,the resulting gravitational corrections to the β function are found to be nonzero, which is different from previous resultspresented in the existing literatures.展开更多
New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest...New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest adiabatic potential energy surfaces correlating asymptotically with Cl(^2p)+H2 have been transformed to adiabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin-orbit coupling surfaces have also been computed using the Breit-Pauli Hamiltonian. Properties of the new potential are described. Reaction dynamics based on the new potential agrees with the recent experimental results quite well.展开更多
Quantifying the changes and propagation of drought is of great importance for regional eco-environmental safety and water-related disaster management under global warming.In this study,phase 6 of the Coupled Model Int...Quantifying the changes and propagation of drought is of great importance for regional eco-environmental safety and water-related disaster management under global warming.In this study,phase 6 of the Coupled Model Intercomparison Project was employed to examine future meteorological(Standardized Precipitation Index,SPI,and Standardized Precipitation-Evapotranspiration Index,SPEI),hydrological(Standardized Runoff Index,SRI),and agricultural(Standardized Soil moisture Index,SSI) drought under two warming scenarios(SSP2-4.5 and SSP5-8.5).The results show that,across the globe,different types of drought events generally exhibit a larger spatial extent,longer duration,and greater severity from 1901 to 2100,with SPEI drought experiencing the greatest increases.Although SRI and SSI drought are expected to be more intensifying than SPI drought,the models show higher consistency in projections of SPI changes.Regions with robust drying trends include the southwestern United States,Amazon Basin,Mediterranean,southern Africa,southern Asia,and Australia.It is also found that meteorological drought shows a higher correlation with hydrological drought than with agricultural drought,especially in warm and humid regions.Additionally,the maximum correlation between meteorological and hydrological drought tends to be achieved at a short time scale.These findings have important implications for drought monitoring and policy interventions for water resource management under a changing climate.展开更多
Based on observations and Coupled Model lntercomparison Project Phase 5 (CMIP5) results, multidecadal variations and trends in annual mean surface air temperature anomalies (SATa) at global, hemispheric, and hemis...Based on observations and Coupled Model lntercomparison Project Phase 5 (CMIP5) results, multidecadal variations and trends in annual mean surface air temperature anomalies (SATa) at global, hemispheric, and hemispheric land and ocean scales in the past and under the future scenarios of two representative concentration pathways (RCPs) are analyzed. Fifteen models are selected based on their performances in capturing the temporal variability, long-term trend, multidecadal variations, and trends in global annual mean SATa. Observational data analysis shows that the multidecadal variations in annual mean SATa of the land and ocean in the northern hemisphere (NH) and of the ocean in the southern hemisphere (SH) are similar to those of the global mean, showing an increase during the 1900-1944 and 1971-2000 periods, and flattening or even cooling during the 1945-1970 and 2001-2013 periods. These observed characteristics are basically reproduced by the models. However, SATa over SH land show an increase during the 1945-1970 period, which differs from the other hemispheric scales, and this feature is not captured well by the models. For the recent hiatus period (2001-2013), the projected trends of BCC-CSM1-1-m, CMCC-CM, GFDL-ESM2M, and NorESM1-ME at the global and hemispheric scales are closest to the observations based on RCP4.5 and RCP8.5 scenarios, suggesting that these four models have better projection capability in SATa. Because these four models are better at simulating and projecting the multidecadal trends of SATa, they are selected to analyze future SATa variations at the global and hemispheric scales during the 2006-2099 period. The selected multi-model ensemble (MME) projected trends in annual mean SATa for the globe, NH, and SH under RCP4.5 (RCP8.5) are 0.17 (0.29) ℃, 0.22 (0.36) ℃, and 0.11 (0.23) ℃-decade-1 in the 21st century, respectively. These values are significantly lower than the projections of CMIP5 MME without model selection.展开更多
A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pres-sure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the fu...A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pres-sure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the full mechanism using sensitivity analysis,reaction path analysis and quasi steady state(QSS) approximation. The model in premixed flame was validated and with computing savings in diffusion flame was applied by incor-porating into a CFD code. Simulations were performed to explore the effect of coflow air on flame structure and soot formation. Thermal radiation was calculated by a discrete-ordinates method,and soot formation was predicted by a simple two-equation soot model. Model results are in good agreement with those from experiment data and detailed mechanism at atmospheric conditions. The soot nucleation,growth,and oxidation by OH are all enhanced by decrease in coflow air velocity. The peak soot volume fraction region appears in the lower annular region be-tween the peak flame temperature and peak acetylene concentration locations,and the high soot oxidation rate due to the OH attack occurs in the middle annular region because of high temperature.展开更多
The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, wh...The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, which is envisioned as the"Internet of Things" (IoT). Since a huge number of heterogeneous resources are brought in- to IoT, one of the main challenges is how to effi- ciently manage the increasing complexity of IoT in a scalable, flexNle, and autonomic way. Further- more, the emerging IoT applications will require collaborations among loosely coupled devices, which may reside in various locations of the Inter- net. In this paper, we propose a new IoT network management architecture based on cognitive net- work management technology and Service-Orien- ted Architecture to provide effective and efficient network management of loT.展开更多
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金Project(2007CB714202) supported by the National Key Basic Research Program of ChinaProject(SLDRCE10-B-07) supported by theMinistry of Science and Technology of China
文摘An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.
文摘An integrated optimization design was described using multilevel decomposition technique on the base of the parametric distribution and independent axiom at the stages of lower level. Based on Pareto optimum solution, the detailed parameters at lower level can be defined into the independent axiom. The suspension design was used as the simulation example. In an axiomatic design for the optimization design, the uncoupled and decoupled designs between functional requirements and design parameters are generally needed. But using the design sensitivity(or screening) of design parameters, the approximate uncoupled design is developed on behalf of the decoupled and coupled designs. Successive design parameters were applied to the suspension of torsion beam axle. The structural performance increases by 18%. The kinematic and compliance performance increases by 6% within the feasible ranges.
基金supported by the National Key R&D Program of China[grant number 2017YFA0603802]the National Natural Science Foundation of China[grant numbers 41661144005,41320104007,and 41575086]the CAS-PKU(Chinese Academy of Sciences-Peking University) Joint Research Program
文摘The authors examine the spatial and temporal characteristics of the simulated Pacific Decadal Oscillation (PDO) in 109 historical (i.e. all forcings) simulations derived from 25 coupled models within CMIPS. Compared with observations, most simulations successfully simulate the observed PDO pattern and its teleconnections to the SSTs in the tropical and southern Pacific. BNU-ESM, CanESM2, CCSM4, CESM 1 -FASTCHEM, FGOALS-g2, GFDL CM3, MIROCS, and NorESM 1 -M show better performance. Compared with the temporal phases of the observed PDO in the twentieth century, only five simulations -- from CNRM^CMS, CSIRO Mk3o6.0, HadCM3, and IPSL-CMSA-LR -- simulate an evolution of the PDO similar to that derived from observation, which suggests that current coupled models can barely reproduce the observed phase shifting of the PDO. To capture characteristics of the observed PDO in the twentieth century, a requirement is that all the relevant external forcings are included in the models. How to add realistic oceanic initial states into the model may be another key point.
基金Major Research Program for Global Change and Regional Response, National Natural Science Foundation of China (40231005) Program for Knowledge Innovation Project, Chinese Academy of Science (KZ CX3-SW-218).
文摘Simulations of the interdecadal variations of summer rainfall over China are assessed from 5 coupled AOGCMs from the Data Distribution Center (DDC) of the Intergovernmental Panel in Climate Change (IPCC) under the IPCC-Special Report in Emission Scenarios (SRES) A2 and B2 scenario. We examined their ability in simulating the interdecadal variations of summer precipitation over China from 1951 to 1990. The difference before and after the mid-1960’s and the late 1970’s is given respectively to check the capability of the models, especially in reproducing the rainfall jump in North China. We also investigated the interdecadal variations simulated by the models in the 1990’s and the average of 2001-2020 in the future under the scenario A2 and B2. The analysis shows that the current AOGCMs is not good enough in simulating the interdecadal variations of summer precipitation in China. The interdecadal variations of summer rainfall simulated by most of the models cannot reproduce the observation in North China. Higher resolution models are suggested to well simulate the interdecadal variability in regional scale.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
文摘The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical energy analysis(SEA). The modal analysis method is used to discuss the vibration energy of the typical model, as well as the power flow between the two subsystems. Furthermore, the resolution to the coupling loss factor is also derived and compared with the measured values. The analytical results of the coupling loss factor agree with the measured ones fully, this new resolution is significant for the application of SEA.
基金This study was supported by the National Key Research and Development Program on the Monitoring,Early Warning and Prevention of Major Natural Disasters[grant numbers 2019YFC1510004 and 2018YFC1506002]the Jiangsu Collaborative Innovation Center for Climate Change.
文摘This paper assesses the interannual variabilities of simulated sea surface salinity(SSS)and freshwater flux(FWF)in the tropical Pacific from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).The authors focus on comparing the simulated SSS and FWF responses to El Nino–Southern Oscillation(ENSO)from two generations of models developed by the same group.The results show that CMIP5 and CMIP6 models can perform well in simulating the spatial distributions of the SSS and FWF responses associated with ENSO,as well as their relationship.It is found that most CMIP6 models have improved in simulating the geographical distribution of the SSS and FWF interannual variability in the tropical Pacific compared to CMIP5 models.In particular,CMIP6 models have corrected the underestimation of the spatial relationship of the FWF and SSS variability with ENSO in the central-western Pacific.In addition,CMIP6 models outperform CMIP5 models in simulating the FWF interannual variability(spatial distribution and intensity)in the tropical Pacific.However,as a whole,CMIP6 models do not show improved skill scores for SSS interannual variability,which is due to their overestimation of the intensity in some models.Large uncertainties exist in simulating the interannual variability of SSS among CMIP5 and CMIP6 models and some improvements with respect to physical processes are needed.
基金Projects(51774054,51974050)supported by the National Natural Science Foundation of China。
文摘Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.
文摘A measurement system with the CCD matrix and computer system is designed to test the 2D size of any shape workpieces automatically. In addition, the system adopts the method of the relative measurement which increases the precision and the velocity.More importantly,the precision cant be changed with the conditions of the temperature and air pressure.The experiments show that the relative precision of 0.002 9 and the absolute precision of 2.97 μm are obtained. The instrument may be used in the product line and make the testing on line possible.
文摘A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time saving. So it is promising in the field of both investigation and application.
基金National Natural Science Foundation of China under Grant Nos.70571017 and 10647001Natural Science Foundation of Guangxi Province under Grant No,0728042
文摘We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10821504,10491306,10975170 the Project of Knowledge Innovation Program of Chinese Academy of Science
文摘Gravitational contributions to the running of gauge couplings are calculated by using different regularizationschemes.As the β function concerns counter-terms of dimension four, only quadratic divergences from the gravitationalcontributions need to be investigated.A consistent result is obtained by using a symmetry-preserving loop regularizationwith string-mode regulators which can appropriately treat the quadratic divergences and preserve non-abelian gaugesymmetry.The harmonic gauge condition for gravity is used in both diagrammatical and background field calculations,the resulting gravitational corrections to the β function are found to be nonzero, which is different from previous resultspresented in the existing literatures.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20725312 and No.20533060) and the Ministry of Science and Technology (No.2007CB815201).
文摘New global three dimensional potential energy surfaces for the Cl+H2 reactive system have been constructed using accurate multireference configuration interaction calculations with a large basis set. The three lowest adiabatic potential energy surfaces correlating asymptotically with Cl(^2p)+H2 have been transformed to adiabatic representation, which leads to a fourth coupling potential for non-linear geometries. In addition, the spin-orbit coupling surfaces have also been computed using the Breit-Pauli Hamiltonian. Properties of the new potential are described. Reaction dynamics based on the new potential agrees with the recent experimental results quite well.
基金supported by the National Natural Science Foundation of China [grant numbers 4208810141901024+1 种基金42175168]the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) [grant number 311021009]。
文摘Quantifying the changes and propagation of drought is of great importance for regional eco-environmental safety and water-related disaster management under global warming.In this study,phase 6 of the Coupled Model Intercomparison Project was employed to examine future meteorological(Standardized Precipitation Index,SPI,and Standardized Precipitation-Evapotranspiration Index,SPEI),hydrological(Standardized Runoff Index,SRI),and agricultural(Standardized Soil moisture Index,SSI) drought under two warming scenarios(SSP2-4.5 and SSP5-8.5).The results show that,across the globe,different types of drought events generally exhibit a larger spatial extent,longer duration,and greater severity from 1901 to 2100,with SPEI drought experiencing the greatest increases.Although SRI and SSI drought are expected to be more intensifying than SPI drought,the models show higher consistency in projections of SPI changes.Regions with robust drying trends include the southwestern United States,Amazon Basin,Mediterranean,southern Africa,southern Asia,and Australia.It is also found that meteorological drought shows a higher correlation with hydrological drought than with agricultural drought,especially in warm and humid regions.Additionally,the maximum correlation between meteorological and hydrological drought tends to be achieved at a short time scale.These findings have important implications for drought monitoring and policy interventions for water resource management under a changing climate.
基金This study was supported by National Key Research and Development Program of China (2016YFA0601801), the State Key Program of National Natural Science Foundation of China (41530424), National Program on Global Change and Air-Sea Interactions, State Oceanic Administration (SOA) (GASI-IPOVAI-03), and the National Natural Science Foundation of China (41305121). We sincerely thank two anonymous reviewers whose comments improved the paper.
文摘Based on observations and Coupled Model lntercomparison Project Phase 5 (CMIP5) results, multidecadal variations and trends in annual mean surface air temperature anomalies (SATa) at global, hemispheric, and hemispheric land and ocean scales in the past and under the future scenarios of two representative concentration pathways (RCPs) are analyzed. Fifteen models are selected based on their performances in capturing the temporal variability, long-term trend, multidecadal variations, and trends in global annual mean SATa. Observational data analysis shows that the multidecadal variations in annual mean SATa of the land and ocean in the northern hemisphere (NH) and of the ocean in the southern hemisphere (SH) are similar to those of the global mean, showing an increase during the 1900-1944 and 1971-2000 periods, and flattening or even cooling during the 1945-1970 and 2001-2013 periods. These observed characteristics are basically reproduced by the models. However, SATa over SH land show an increase during the 1945-1970 period, which differs from the other hemispheric scales, and this feature is not captured well by the models. For the recent hiatus period (2001-2013), the projected trends of BCC-CSM1-1-m, CMCC-CM, GFDL-ESM2M, and NorESM1-ME at the global and hemispheric scales are closest to the observations based on RCP4.5 and RCP8.5 scenarios, suggesting that these four models have better projection capability in SATa. Because these four models are better at simulating and projecting the multidecadal trends of SATa, they are selected to analyze future SATa variations at the global and hemispheric scales during the 2006-2099 period. The selected multi-model ensemble (MME) projected trends in annual mean SATa for the globe, NH, and SH under RCP4.5 (RCP8.5) are 0.17 (0.29) ℃, 0.22 (0.36) ℃, and 0.11 (0.23) ℃-decade-1 in the 21st century, respectively. These values are significantly lower than the projections of CMIP5 MME without model selection.
基金Supported by the National Natural Science Foundation of China(50806023 50721005 50806024) Program of Introducing Talents of Discipline to Universities of China(“111” Project B06019)
文摘A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pres-sure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the full mechanism using sensitivity analysis,reaction path analysis and quasi steady state(QSS) approximation. The model in premixed flame was validated and with computing savings in diffusion flame was applied by incor-porating into a CFD code. Simulations were performed to explore the effect of coflow air on flame structure and soot formation. Thermal radiation was calculated by a discrete-ordinates method,and soot formation was predicted by a simple two-equation soot model. Model results are in good agreement with those from experiment data and detailed mechanism at atmospheric conditions. The soot nucleation,growth,and oxidation by OH are all enhanced by decrease in coflow air velocity. The peak soot volume fraction region appears in the lower annular region be-tween the peak flame temperature and peak acetylene concentration locations,and the high soot oxidation rate due to the OH attack occurs in the middle annular region because of high temperature.
基金supported by the National Sci.&Tech. Major Project of China(No.2010ZX03004-002)the National Natural Science Foundation of China(No.60972083)
文摘The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, which is envisioned as the"Internet of Things" (IoT). Since a huge number of heterogeneous resources are brought in- to IoT, one of the main challenges is how to effi- ciently manage the increasing complexity of IoT in a scalable, flexNle, and autonomic way. Further- more, the emerging IoT applications will require collaborations among loosely coupled devices, which may reside in various locations of the Inter- net. In this paper, we propose a new IoT network management architecture based on cognitive net- work management technology and Service-Orien- ted Architecture to provide effective and efficient network management of loT.