An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) ...An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.展开更多
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pres-sure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the fu...A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pres-sure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the full mechanism using sensitivity analysis,reaction path analysis and quasi steady state(QSS) approximation. The model in premixed flame was validated and with computing savings in diffusion flame was applied by incor-porating into a CFD code. Simulations were performed to explore the effect of coflow air on flame structure and soot formation. Thermal radiation was calculated by a discrete-ordinates method,and soot formation was predicted by a simple two-equation soot model. Model results are in good agreement with those from experiment data and detailed mechanism at atmospheric conditions. The soot nucleation,growth,and oxidation by OH are all enhanced by decrease in coflow air velocity. The peak soot volume fraction region appears in the lower annular region be-tween the peak flame temperature and peak acetylene concentration locations,and the high soot oxidation rate due to the OH attack occurs in the middle annular region because of high temperature.展开更多
基金Project(2007CB714202) supported by the National Key Basic Research Program of ChinaProject(SLDRCE10-B-07) supported by theMinistry of Science and Technology of China
文摘An element coupling model (ECM) method was proposed to simulate the global behavior and local damage of a structure.In order to reflect the local damage and improve the computational efficiency,three-dimensional (3D) solid elements and one-dimensional (1D) beam element were coupled by the multi-point constraint equations.A reduced scale 1?8 model test was simulated by the ECM and a full three dimensional model (3DM) contrastively.The results show that the global behavior and local damages of ECM agree well with the test and 3DM.It is indicated that the proposed method can be used in the structural nonlinear analysis accurately and efficiently.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
基金Supported by the National Natural Science Foundation of China(50806023 50721005 50806024) Program of Introducing Talents of Discipline to Universities of China(“111” Project B06019)
文摘A computational study of soot formation in ethylene/air coflow jet diffusion flame at atmospheric pres-sure was conducted using a reduced mechanism and soot formation model. A 20-step mechanism was derived from the full mechanism using sensitivity analysis,reaction path analysis and quasi steady state(QSS) approximation. The model in premixed flame was validated and with computing savings in diffusion flame was applied by incor-porating into a CFD code. Simulations were performed to explore the effect of coflow air on flame structure and soot formation. Thermal radiation was calculated by a discrete-ordinates method,and soot formation was predicted by a simple two-equation soot model. Model results are in good agreement with those from experiment data and detailed mechanism at atmospheric conditions. The soot nucleation,growth,and oxidation by OH are all enhanced by decrease in coflow air velocity. The peak soot volume fraction region appears in the lower annular region be-tween the peak flame temperature and peak acetylene concentration locations,and the high soot oxidation rate due to the OH attack occurs in the middle annular region because of high temperature.