The assessment of control configurations for an ideal heat integrated distillation column incorporated with an overhead condenser and a bottom reboiler (general HIDiC) is addressed in this work. It is found that doubl...The assessment of control configurations for an ideal heat integrated distillation column incorporated with an overhead condenser and a bottom reboiler (general HIDiC) is addressed in this work. It is found that double ratio control configuration, (L/D, V/B), is still the best one among all the possibilities. The control configuration,(Pr - Ps, q), appears to be a feasible one for the general HIDiC and the pressure difference between the rectifying and the stripping sections and feed thermal condition are expected to be consistent manipulative variables for the process. The performance of the general HIDiC can be substantially improved by employing effective multivariable control algorithms.展开更多
The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydrau...The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.展开更多
Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present ...Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.展开更多
With progression of the digital age, the complexity of software continues to grow. AS a result, methods to quantitatively assess characteristics of software have attracted significant atten- tion. These efforts have l...With progression of the digital age, the complexity of software continues to grow. AS a result, methods to quantitatively assess characteristics of software have attracted significant atten- tion. These efforts have led to a large number of new measures such as coupling metrics, many of which seek to consider the impact of correlations between components and failures on ap- plication reliability. However, most of these approaches set the coupling parameters arbitrarily by making assumptions instead of utilizing experimental data and therefore may not accurately capture actual coupling between components of software applica- tion. Since the coupling matrix is often set arbitrarily, the existing approaches to assess software reliability considering component correlation fail to reflect the real degree of interaction and rela- tionships among software components. This paper presents an efficient approach to assess the software reliability considering Correlated component failures, incorporating software architec- ture while considering actual internal coupling of software with an efficient approach based on multivariate Bernoulli (MVB) distribu- tion. The unified framework for software Coupling measurement is' informed by a comprehensive survey of frameworks for object- oriented and procedure-oriented software. This framework enables the extraction of more accurate coupling among cornponents. The effectiveness of this method is illustrated through an exPerimental study bylapplying it to a real-time software application.展开更多
基金Supported by the New-Energy and Industry Technology Development Organization(NEDO),through the Energy Conservation Center of Japan.
文摘The assessment of control configurations for an ideal heat integrated distillation column incorporated with an overhead condenser and a bottom reboiler (general HIDiC) is addressed in this work. It is found that double ratio control configuration, (L/D, V/B), is still the best one among all the possibilities. The control configuration,(Pr - Ps, q), appears to be a feasible one for the general HIDiC and the pressure difference between the rectifying and the stripping sections and feed thermal condition are expected to be consistent manipulative variables for the process. The performance of the general HIDiC can be substantially improved by employing effective multivariable control algorithms.
基金Project(50139030) supported by the National Natural Science Foundation of ChinaProject(501072) supported by the Scientific Research Foundation for the Returned Overseas Scholars of the Ministry of Education of China
文摘The seepage under a dam foundation is mainly controlled by the performance of the curtain.Its anti-seepage behavior may be weakened by the long term physic-chemical actions from groundwater.According to seepage hydraulics and geochemistry theory,a coupling model for assessing the behavior of the curtain under a dam foundation is set up,which consists of seepage module,solute transport module,geochemistry module and curtain erosion module,solved by FEM.A case study was carried out.The result shows that the curtain efficiency is weakened all the time.Aqueous calcium from the curtain is always in dissolution during the stress period for simulation,which leads to the increasing amount in groundwater reaching 846.35-865.312 g/m3.Within the domain,reaction extent differs in different parts of the curtain.The dissolution of Ca(OH)2 accounts to 877.884 g/m3 near the bottom and is much higher than that of the other parts.The erosion is much more serious near the bottom of the curtain than the other parts,which is the same to the upstream and downstream.Calcium dissolution is mainly controlled by hydraulic condition and dispersion,and it varies in a non-linear way within the domain.
基金supported by the National Natural Science Foundation of China(2009CB421407 and 2010CB950501)
文摘Based on 18 global climate models' simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.
基金supported by the National Aerospace Science Foundation of China(20140751008)
文摘With progression of the digital age, the complexity of software continues to grow. AS a result, methods to quantitatively assess characteristics of software have attracted significant atten- tion. These efforts have led to a large number of new measures such as coupling metrics, many of which seek to consider the impact of correlations between components and failures on ap- plication reliability. However, most of these approaches set the coupling parameters arbitrarily by making assumptions instead of utilizing experimental data and therefore may not accurately capture actual coupling between components of software applica- tion. Since the coupling matrix is often set arbitrarily, the existing approaches to assess software reliability considering component correlation fail to reflect the real degree of interaction and rela- tionships among software components. This paper presents an efficient approach to assess the software reliability considering Correlated component failures, incorporating software architec- ture while considering actual internal coupling of software with an efficient approach based on multivariate Bernoulli (MVB) distribu- tion. The unified framework for software Coupling measurement is' informed by a comprehensive survey of frameworks for object- oriented and procedure-oriented software. This framework enables the extraction of more accurate coupling among cornponents. The effectiveness of this method is illustrated through an exPerimental study bylapplying it to a real-time software application.