Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external bi...Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.展开更多
In the paper, we investigate a globally coupled linear system with finite subunits subject to temporal periodic force and with multiplicative dichotomous noise. It is shown that, the global coupling among the subunits...In the paper, we investigate a globally coupled linear system with finite subunits subject to temporal periodic force and with multiplicative dichotomous noise. It is shown that, the global coupling among the subunits can hugely enhance the phenomenon of SR for the amplitude of the average mean field as the functions of the transition rate of the noise and that as the function of the frequency of the signal respectively.展开更多
文摘Collective unidirectional motion of an asymmetrically coupled array of oscillators in symmetric periodic potentials is studied. A directed current is observed when the drift coupling is presented, while no external biased force is applied. Negative directed current is found when varying system parameters. An addition of a periodic rocking force may enhance the efficiency of directed transport. Resonant steps of the current are found and interpreted as the mode locking between the array and the ac force. Noise-assisted transport is observed, and an optimal noise intensity can give rise to a most efficient transport. The directed transport thus can be optimized and furthermore controlled by suitably adjusting the parameters of the system.
基金supported by the Ningbo's Supplement of National Natural Science Foundation of China under Grant No.10375009SRF for ROCS,SEM,and K.C.Wong Magna Fund in Ningbo University of China
文摘In the paper, we investigate a globally coupled linear system with finite subunits subject to temporal periodic force and with multiplicative dichotomous noise. It is shown that, the global coupling among the subunits can hugely enhance the phenomenon of SR for the amplitude of the average mean field as the functions of the transition rate of the noise and that as the function of the frequency of the signal respectively.