Surface sediment samples were collected at 21 offshore sites in western Xiamen Bay, Southeast China. Total concentrations of Li, V, Cr, Co, Ni, Cu, Zn, St, Mn, Pb, Ba, Fe, and Ti were determined by inductively coupled...Surface sediment samples were collected at 21 offshore sites in western Xiamen Bay, Southeast China. Total concentrations of Li, V, Cr, Co, Ni, Cu, Zn, St, Mn, Pb, Ba, Fe, and Ti were determined by inductively coupled plasma-optical emission spectrometry; Hg was determined by atomic fluorescence spectrometry. A modified BCR sequential extraction procedure was used to extract fractions of the above elements. Concentrations of Pb, Cr, and Hg at most sites met the primary standard criteria of Marine Sediment Quality except site S12 for Pb and S7 for Cr, while concentrations of Zn at 17 sites and Cu at seven sites exceeded the criteria. The mean concentration of Hg was three times higher than the background, with a possible source being the Jiulong River. Fe, Ti, Ba, Co, V, and Li dominated the residual phase, mainly from terrestrial input. Ni, Cr, Pb, and Hg in the non-residual phase varied largely between sites. Sr, Mn, Cu, and Zn were mainly in the non- residual fraction. Most sites showed considerable ecological risk; exceptions were site S7 (very high) and sites S10, S11, and S14 (moderate). Cu showed moderate-to-high pollution and Pb exhibited no-to-low pollution, while other metals had a non-pollution status according to their ratios of secondary phase to primary phase (RSP). Results of two assessment methods showed moderate pollution and a very high ecological risk for Cu, Zn, Ni, and Cr at site S7, which might be due to the local sewage treatment plant.展开更多
Conventional coupled BE/FE (Boundary-Element/Finite-Element) method and modeling of structural-acoustic interaction has shown its promise and potential in the design and analysis of various structural-acoustic inter...Conventional coupled BE/FE (Boundary-Element/Finite-Element) method and modeling of structural-acoustic interaction has shown its promise and potential in the design and analysis of various structural-acoustic interaction applications. Unified combined acoustic and aerodynamic loading on the structure is synthesized using two approaches. Firstly, by linear superposition of the acoustic pressure disturbance to the aeroelastic problem, the effect of acoustic pressure disturbance to the aeroelastic structure is considered to consist of structural motion independent incident acoustic pressure and structural motion dependent acoustic pressure, which is known as the scattering pressure, referred here as the acoustic aerodynamic analogy. Secondly, by synthesizing the acoustic and aerodynamic effects on elastic structure using an elegant, effective and unified approach, both acoustic and aerodynamic effect on solid structural boundaries can be formulated as a boundary value problem governed by second order differential equations which lead to solutions expressible as surface integral equations. The unified formulation of the acousto-aeroelastic problem is amenable for simultaneous solution, although certain prevailing situations allow the solution of the equations independently. For this purpose, the unsteady aerodynamic problem which was earlier utilizes well-established lifting surface method is reformulated using Boundary Element (BE) approach. These schemes are outlined and worked out with examples.展开更多
基金supported by the National Natural Science Foundation of China(21177043,21077036)+1 种基金State Key Laboratory of Environmental Geochemistry(SKLEG2013801)Cultivation Project on 2014 Postgraduates’Research and Innovation Capability of Huaqiao University(426)
文摘Surface sediment samples were collected at 21 offshore sites in western Xiamen Bay, Southeast China. Total concentrations of Li, V, Cr, Co, Ni, Cu, Zn, St, Mn, Pb, Ba, Fe, and Ti were determined by inductively coupled plasma-optical emission spectrometry; Hg was determined by atomic fluorescence spectrometry. A modified BCR sequential extraction procedure was used to extract fractions of the above elements. Concentrations of Pb, Cr, and Hg at most sites met the primary standard criteria of Marine Sediment Quality except site S12 for Pb and S7 for Cr, while concentrations of Zn at 17 sites and Cu at seven sites exceeded the criteria. The mean concentration of Hg was three times higher than the background, with a possible source being the Jiulong River. Fe, Ti, Ba, Co, V, and Li dominated the residual phase, mainly from terrestrial input. Ni, Cr, Pb, and Hg in the non-residual phase varied largely between sites. Sr, Mn, Cu, and Zn were mainly in the non- residual fraction. Most sites showed considerable ecological risk; exceptions were site S7 (very high) and sites S10, S11, and S14 (moderate). Cu showed moderate-to-high pollution and Pb exhibited no-to-low pollution, while other metals had a non-pollution status according to their ratios of secondary phase to primary phase (RSP). Results of two assessment methods showed moderate pollution and a very high ecological risk for Cu, Zn, Ni, and Cr at site S7, which might be due to the local sewage treatment plant.
文摘Conventional coupled BE/FE (Boundary-Element/Finite-Element) method and modeling of structural-acoustic interaction has shown its promise and potential in the design and analysis of various structural-acoustic interaction applications. Unified combined acoustic and aerodynamic loading on the structure is synthesized using two approaches. Firstly, by linear superposition of the acoustic pressure disturbance to the aeroelastic problem, the effect of acoustic pressure disturbance to the aeroelastic structure is considered to consist of structural motion independent incident acoustic pressure and structural motion dependent acoustic pressure, which is known as the scattering pressure, referred here as the acoustic aerodynamic analogy. Secondly, by synthesizing the acoustic and aerodynamic effects on elastic structure using an elegant, effective and unified approach, both acoustic and aerodynamic effect on solid structural boundaries can be formulated as a boundary value problem governed by second order differential equations which lead to solutions expressible as surface integral equations. The unified formulation of the acousto-aeroelastic problem is amenable for simultaneous solution, although certain prevailing situations allow the solution of the equations independently. For this purpose, the unsteady aerodynamic problem which was earlier utilizes well-established lifting surface method is reformulated using Boundary Element (BE) approach. These schemes are outlined and worked out with examples.