Based on the second integrable ease of known two-dimensional Hamiltonian system with a quartie potentiM, we propose a 4 × 4 matrix speetrM problem and derive a hierarchy of coupled KdV equations and their Hamilto...Based on the second integrable ease of known two-dimensional Hamiltonian system with a quartie potentiM, we propose a 4 × 4 matrix speetrM problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differentiM equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable ease of the two-dimensional Hamiltonian system.展开更多
Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is de...Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.展开更多
The hybrid lattice, known as a discrete Korteweg-de Vries (KdV) equation, is found to be a discrete modified Korteweg-de Vries (mKdV) equation in this paper. The coupled hybrid lattice, which is pointed to be a discre...The hybrid lattice, known as a discrete Korteweg-de Vries (KdV) equation, is found to be a discrete modified Korteweg-de Vries (mKdV) equation in this paper. The coupled hybrid lattice, which is pointed to be a discrete coupled KdV system, is also found to be discrete form of a coupled mKdV systems. Delayed differential reduction system and pure difference systems are derived from the coupled hybrid system by means of the symmetry reduction approach. Cnoidal wave, positon and negaton solutions for the coupled hybrid system are proposed.展开更多
In fluid dynamics, plasma physics and nonlinear optics, Korteweg-de Vries (KdV)-type equations are used to describe certain phenomena. In this paper, a coupled KdV-modified KdV system is investigated. Based on the Bel...In fluid dynamics, plasma physics and nonlinear optics, Korteweg-de Vries (KdV)-type equations are used to describe certain phenomena. In this paper, a coupled KdV-modified KdV system is investigated. Based on the Bell polynomials and symbolic computation, the bilinear form of such system is derived, and its analytic N-soliton solutions are constructed through the Hirota method. Two types of multi-soliton interactions are found, one with the reverse of solitonic shapes, and the other, without. Both the two types can be considered elastic. For a pair of solutions to such system, u and v, with the number of solitons N even, the soliton shapes of u stay unvaried while those of v reverse after the interaction; with N odd, the soliton shapes of both u and v keep unchanged after the interaction.展开更多
基金High Education Science Research Program of Inner Mongolia(No.NJZY12056)Scientific Research Foundation of Inner Mongolia University of Technology(No.ZS201033)
基金the Funds for Basic Research Project under Grant Nos.06XJC033 and 2008Bl10003
文摘Based on the second integrable ease of known two-dimensional Hamiltonian system with a quartie potentiM, we propose a 4 × 4 matrix speetrM problem and derive a hierarchy of coupled KdV equations and their Hamiltonian structures. It is shown that solutions of the coupled KdV equations in the hierarchy are reduced to solving two compatible systems of ordinary differentiM equations. As an application, quite a few explicit solutions of the coupled KdV equations are obtained via using separability for the second integrable ease of the two-dimensional Hamiltonian system.
基金Supported by the Nature Science Foundation of Shandong Province of China under Grant No.ZR.2009GM005the Science and Technology Plan Project of the Educational Department of Shandong Province of China under Grant No.J09LA54the research project of "SUST Spring Bud" of Shandong University of Science and Technology of China under Grant No.2009AZZ071
文摘Based on semi-direct sums of Lie subalgebra G, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. A hierarchy of integrable coupling KdV equation with three potentials is proposed, which is derived from a new discrete six-by-six matrix spectral problem. Moreover, the Hamiltonian forms is deduced for lattice equation in the resulting hierarchy by means of the discrete variational identity -- a generalized trace identity. A strong symmetry operator of the resulting hierarchy is given. Finally, we prove that the hierarchy of the resulting Hamiltonian equations is Liouville integrable discrete Hamiltonian systems.
基金Supported by the Natural Science Foundation of Guangdong Province of China under Grant No. 10452840301004616the National Natural Science Foundation of China under Grant No. 61001018the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute under Grant No. 408YKQ09
文摘The hybrid lattice, known as a discrete Korteweg-de Vries (KdV) equation, is found to be a discrete modified Korteweg-de Vries (mKdV) equation in this paper. The coupled hybrid lattice, which is pointed to be a discrete coupled KdV system, is also found to be discrete form of a coupled mKdV systems. Delayed differential reduction system and pure difference systems are derived from the coupled hybrid system by means of the symmetry reduction approach. Cnoidal wave, positon and negaton solutions for the coupled hybrid system are proposed.
基金Supported by the National Natural Science Foundation of China under Grant No. 60772023the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02+1 种基金the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 200800130006, Chinese Ministry of Education
文摘In fluid dynamics, plasma physics and nonlinear optics, Korteweg-de Vries (KdV)-type equations are used to describe certain phenomena. In this paper, a coupled KdV-modified KdV system is investigated. Based on the Bell polynomials and symbolic computation, the bilinear form of such system is derived, and its analytic N-soliton solutions are constructed through the Hirota method. Two types of multi-soliton interactions are found, one with the reverse of solitonic shapes, and the other, without. Both the two types can be considered elastic. For a pair of solutions to such system, u and v, with the number of solitons N even, the soliton shapes of u stay unvaried while those of v reverse after the interaction; with N odd, the soliton shapes of both u and v keep unchanged after the interaction.