A functional central limit theorem is proved for the centered occupation time process of the super α-stable processes in the finite dimensional distribution sense. For the intermediate dimensions α < d < 2α (...A functional central limit theorem is proved for the centered occupation time process of the super α-stable processes in the finite dimensional distribution sense. For the intermediate dimensions α < d < 2α (0 < α ≤ 2), the limiting process is a Gaussian process, whose covariance is specified; for the critical dimension d= 2α and higher dimensions d < 2α, the limiting process is Brownian motion.展开更多
Suppose that Xt is the Fleming-Viot process associated with fractional power Laplacian operator -(-△)α/2 0 < α≥ 2, and Yt= f_0 ̄t Xs.ds is the so-called occupation time process.In this paper) the asymptotic be...Suppose that Xt is the Fleming-Viot process associated with fractional power Laplacian operator -(-△)α/2 0 < α≥ 2, and Yt= f_0 ̄t Xs.ds is the so-called occupation time process.In this paper) the asymptotic behavior at a large time and the absolute continuity of Yt are investigated.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.10101005 and 10121101)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry.
文摘A functional central limit theorem is proved for the centered occupation time process of the super α-stable processes in the finite dimensional distribution sense. For the intermediate dimensions α < d < 2α (0 < α ≤ 2), the limiting process is a Gaussian process, whose covariance is specified; for the critical dimension d= 2α and higher dimensions d < 2α, the limiting process is Brownian motion.
文摘Suppose that Xt is the Fleming-Viot process associated with fractional power Laplacian operator -(-△)α/2 0 < α≥ 2, and Yt= f_0 ̄t Xs.ds is the so-called occupation time process.In this paper) the asymptotic behavior at a large time and the absolute continuity of Yt are investigated.