联合建模与仿真系统(Joint Modeling and Simulation System,JMASS)项目是美军三个"J"类(JMASSJ、WARSJ、SIMS)重要项目中的一个,是在美国空军电子战数字评估系统(ECDES)的基础上发展起来的联合项目。开发JMASS项目的目的是...联合建模与仿真系统(Joint Modeling and Simulation System,JMASS)项目是美军三个"J"类(JMASSJ、WARSJ、SIMS)重要项目中的一个,是在美国空军电子战数字评估系统(ECDES)的基础上发展起来的联合项目。开发JMASS项目的目的是在提供可重用的建模与仿真资源库(MSRL)的同时,开发一个标准的数字化建模与仿真体系结构和有关工具集,来支持对电子战环境下的武器系统进行工程级/交战级建模与仿真的分析、开发、采办以及测试与评估。本文围绕JMASS系统的主要特点、组成结构及通过HLA实现互操作等方面进行了深入研究。展开更多
In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural...In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved.展开更多
Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Conside...Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Considering the complexity and structural non-linearity of the TTBI system under earthquakes,a single software is not adequate for the coupling analysis.Therefore,in this paper,an interactive method for the TTBI system is proposed by combining the multi-body dynamics software Simpack and the seismic simulation software OpenSees based on the Client-Server architecture,which takes full advantages of the powerful wheel-track contact analysis capabilities of Simpack and the sophisticated nonlinear analysis capabilities of OpenSees.Based on the proposed Simpack and OpenSees co-simulating train-track-bridge(SOTTB)method,a single-span bridge analysis under the earthquake was conducted and the accuracy of co-simulation method was verified by comparing it with results of the finite element model.Finally,the TTBI model is built utilizing the SOTTB method to further discuss the running safety of HST on multi-span simply supported bridges under earthquakes.The results show that the SOTTB method has the advantages of usability,high versatility and accuracy which can be further used to study the running safety of HST under earthquakes with high intensities.展开更多
文摘联合建模与仿真系统(Joint Modeling and Simulation System,JMASS)项目是美军三个"J"类(JMASSJ、WARSJ、SIMS)重要项目中的一个,是在美国空军电子战数字评估系统(ECDES)的基础上发展起来的联合项目。开发JMASS项目的目的是在提供可重用的建模与仿真资源库(MSRL)的同时,开发一个标准的数字化建模与仿真体系结构和有关工具集,来支持对电子战环境下的武器系统进行工程级/交战级建模与仿真的分析、开发、采办以及测试与评估。本文围绕JMASS系统的主要特点、组成结构及通过HLA实现互操作等方面进行了深入研究。
文摘In order to design an effective hydraulic motor speed control system, Matlab_Simiulink and AMESim co-simulation technology is adopted to establish more accurate model and reflect the actual system. The neural network proportion-integration-differentiation (PID) control parameters on-line adjustment is utilized to improve system accuracy, celerity and stability. Simulation results indicate that with the control system proposed in this paper, the system deviation is reduced, therefore accuracy is improved; response speed for step signal and sinusoidal signal gets faster, thus acceleration is rapidly improved; and the system can be restored to the control value in case of interfering, so stability is improved.
基金Project(2020EEEVL0403)supported by the China Earthquake AdministrationProjects(51878674,52022113)supported by the National Natural Science Foundation of ChinaProject(2022ZZTS0670)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Under high-level earthquakes,bridge piers and bearings are prone to be damaged and the elastoplastic state of bridge structural components is easily accessible in the train-track-bridge interaction(TTBI)system.Considering the complexity and structural non-linearity of the TTBI system under earthquakes,a single software is not adequate for the coupling analysis.Therefore,in this paper,an interactive method for the TTBI system is proposed by combining the multi-body dynamics software Simpack and the seismic simulation software OpenSees based on the Client-Server architecture,which takes full advantages of the powerful wheel-track contact analysis capabilities of Simpack and the sophisticated nonlinear analysis capabilities of OpenSees.Based on the proposed Simpack and OpenSees co-simulating train-track-bridge(SOTTB)method,a single-span bridge analysis under the earthquake was conducted and the accuracy of co-simulation method was verified by comparing it with results of the finite element model.Finally,the TTBI model is built utilizing the SOTTB method to further discuss the running safety of HST on multi-span simply supported bridges under earthquakes.The results show that the SOTTB method has the advantages of usability,high versatility and accuracy which can be further used to study the running safety of HST under earthquakes with high intensities.