-
题名基于联合图学习的多通道语音增强方法
被引量:1
- 1
-
-
作者
张鹏程
郭海燕
王婷婷
杨震
-
机构
南京邮电大学通信与信息工程学院
南京邮电大学通信与网络技术国家地方联合工程研究中心
-
出处
《数据采集与处理》
CSCD
北大核心
2023年第2期283-292,共10页
-
基金
国家自然科学基金(62071242)。
-
文摘
考虑到通道间存在的空间关系影响着其降噪问题,图信号处理可以捕获该潜在关系,若直接采用其空间物理分布图,无法实时反映其时变特性,因此本文提出了一种基于联合图学习的多通道语音增强方法。首先,提出一种联合时间‑空间图学习方法,以最小化多通道含噪语音信号在空间图上的平滑度、参考通道信号在语音帧内图上的平滑度、空间图的稀疏度和帧内图的稀疏度之和为目标,优化阵列空间图和语音帧内图。基于学习的空间图和帧内图,构建多通道语音信号的时间‑空间联合图。在此基础上,将多通道语音图信号进行联合图傅里叶变换,进而采用固定波束形成(Fixed beam forming,FBF)方法进行增强。实验结果表明,与传统的FBF方法相比,所提出的基于联合图学习的FBF(Joint graph learning based FBF,JGL‑FBF)方法显著提升了增强语音的信噪比(Signal‑to‑noise ratio,SNR)和主观语音质量评估(Perceptual evaluation of speech quality,PESQ)。另外,实验结果也表明,JGL‑FBF方法的语音增强性能会受到时延补偿准确性的影响。
-
关键词
联合图学习
语音增强
多通道
波束形成
-
Keywords
joint graph learning
speech enhancement
multi-channel
beam forming
-
分类号
TN911.7
[电子电信—通信与信息系统]
-