现有的面向电力信息物理融合系统(CPPS)的入侵检测方法存在不够重视数据质量等问题,尤其是在处理离散化数据方面存在欠缺。为解决上述问题,提出了一种基于实体嵌入和卷积神经网络的CPPS入侵检测方法。该方法通过实体嵌入技术将数据集中...现有的面向电力信息物理融合系统(CPPS)的入侵检测方法存在不够重视数据质量等问题,尤其是在处理离散化数据方面存在欠缺。为解决上述问题,提出了一种基于实体嵌入和卷积神经网络的CPPS入侵检测方法。该方法通过实体嵌入技术将数据集中的离散型特征映射为连续向量,从而生成高质量的新数据。将其与经过标准化的连续型特征合并起来作为新数据集训练卷积神经网络,以建立CPPS入侵检测模型。在KDD Cup 99数据集上的实验评估结果表明,所提方案的攻击检测准确率分别比独热编码和传统顺序编码提高了6.20%和6.04%,同时还减小了误报率和漏报率。展开更多
近年来,基于深度学习的空域隐写分析研究在高嵌入率下已经取得了较好的成果,但是对低嵌入率的检测效果还不太理想.因此设计了一种卷积神经网络结构,使用SRM滤波器进行预处理来获取隐写噪声残差,采用3个卷积层并对卷积核大小进行合理设计...近年来,基于深度学习的空域隐写分析研究在高嵌入率下已经取得了较好的成果,但是对低嵌入率的检测效果还不太理想.因此设计了一种卷积神经网络结构,使用SRM滤波器进行预处理来获取隐写噪声残差,采用3个卷积层并对卷积核大小进行合理设计,通过适当选择批量归一化操作和激活函数来提升网络的性能.实验结果表明:与现有方法相比,所提出的网络结构对WOW,S-UNIWARD和HILL这3种常见的空域内容自适应隐写算法取得了更好的检测效果,且在低嵌入率0.2bpp,0.1bpp和0.05bpp下的检测效果有非常明显的提升.还提出了逐步迁移(step by step)的迁移学习方法,进一步提升低嵌入率条件下的隐写分析效果.展开更多
文摘现有的面向电力信息物理融合系统(CPPS)的入侵检测方法存在不够重视数据质量等问题,尤其是在处理离散化数据方面存在欠缺。为解决上述问题,提出了一种基于实体嵌入和卷积神经网络的CPPS入侵检测方法。该方法通过实体嵌入技术将数据集中的离散型特征映射为连续向量,从而生成高质量的新数据。将其与经过标准化的连续型特征合并起来作为新数据集训练卷积神经网络,以建立CPPS入侵检测模型。在KDD Cup 99数据集上的实验评估结果表明,所提方案的攻击检测准确率分别比独热编码和传统顺序编码提高了6.20%和6.04%,同时还减小了误报率和漏报率。
文摘近年来,基于深度学习的空域隐写分析研究在高嵌入率下已经取得了较好的成果,但是对低嵌入率的检测效果还不太理想.因此设计了一种卷积神经网络结构,使用SRM滤波器进行预处理来获取隐写噪声残差,采用3个卷积层并对卷积核大小进行合理设计,通过适当选择批量归一化操作和激活函数来提升网络的性能.实验结果表明:与现有方法相比,所提出的网络结构对WOW,S-UNIWARD和HILL这3种常见的空域内容自适应隐写算法取得了更好的检测效果,且在低嵌入率0.2bpp,0.1bpp和0.05bpp下的检测效果有非常明显的提升.还提出了逐步迁移(step by step)的迁移学习方法,进一步提升低嵌入率条件下的隐写分析效果.