期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于稀疏贝叶斯学习的联合平移不变子空间压缩采样
1
作者 宋靖 张剑云 游志刚 《信号处理》 CSCD 北大核心 2012年第5期680-685,共6页
针对一类特殊的有效核函数(active kernel)未知的联合平移不变子空间(Union of Shift-Invariant Subspaces,USI)信号,构建了一种压缩采样模型,将信号的重构过程看作一个线性回归问题,利用稀疏贝叶斯学习(sparsebayesian learning,SBL)... 针对一类特殊的有效核函数(active kernel)未知的联合平移不变子空间(Union of Shift-Invariant Subspaces,USI)信号,构建了一种压缩采样模型,将信号的重构过程看作一个线性回归问题,利用稀疏贝叶斯学习(sparsebayesian learning,SBL)算法求得该回归模型中的权值参数的最优估计,根据权值参数向量集的支撑集实现信号的稀疏重构。理论分析表明,对于由M个核函数(kernel)以T为周期平移生成的平移不变空间(Shift-InvariantSpaces,SI),若M个核函数中至多有K(1≤K≤M/2)个且未知哪K个有效时,本文构建的压缩采样模型最低采样率能够达到2K/T,这也是利用稀疏度K所能达到的理论上的最低采样率。仿真结果表明,构建的压缩采样模型能够有效降低这类信号的采样率。 展开更多
关键词 联合平移不变子空间 压缩采样 稀疏重构 稀疏贝叶斯学习
下载PDF
联合平移不变子空间的压缩采样及应用
2
作者 宋靖 张剑云 游志刚 《电子信息对抗技术》 2012年第5期27-33,共7页
针对有效核函数(active kernel function)未知的联合平移不变子空间(Union of Shift-InvariantSubspaces,USI),提出了一种压缩采样模型,基于稀疏重构理论,该采样模型能够有效降低信号的采样率。首先建立一个多脉冲雷达回波信号模型,在... 针对有效核函数(active kernel function)未知的联合平移不变子空间(Union of Shift-InvariantSubspaces,USI),提出了一种压缩采样模型,基于稀疏重构理论,该采样模型能够有效降低信号的采样率。首先建立一个多脉冲雷达回波信号模型,在信号的延时-多普勒平面上对延时轴离散化,将回波信号表示为USI信号;然后在根据构建的压缩采样模型降低信号采样率的同时,利用稀疏贝叶斯学习和ESPRIT算法由信号样本值估计出雷达回波信号的延时、多普勒频移和反射系数等参数;最后仿真验证了研究结论的有效性。 展开更多
关键词 联合平移不变子空间 离散化 参数估计 压缩采样 稀疏贝叶斯学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部