期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
不完备信息系统确定性和集对联系度的粗集拓展模型 被引量:3
1
作者 李长清 李克典 李进金 《工程数学学报》 CSCD 北大核心 2010年第2期342-346,共5页
本文把集对分析的思想融入不完备信息系统确定性理论之中,得到了更广泛的拓展模型,它是通过调整参数,达到对系统的理想分类。这种模型既保留了已有的拓展模型的优点,又克服了它们的局限性,为处理不完备信息系统提供了一种有效的方法。
关键词 不完备信息系统 联合确定率 集对分析 联系度
下载PDF
Uncertainty analysis of correlated non-normal geotechnical parameters using Gaussian copula 被引量:10
2
作者 LI DianQing TANG XiaoSong +1 位作者 ZHOU ChuangBing PHOON Kok-Kwang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第11期3081-3089,共9页
Determining the joint probability distribution of correlated non-normal geotechnical parameters based on incomplete statistical data is a challenging problem.This paper proposes a Gaussian copula-based method for mode... Determining the joint probability distribution of correlated non-normal geotechnical parameters based on incomplete statistical data is a challenging problem.This paper proposes a Gaussian copula-based method for modelling the joint probability distribution of bivariate uncertain data.First,the concepts of Pearson and Kendall correlation coefficients are presented,and the copula theory is briefly introduced.Thereafter,a Pearson method and a Kendall method are developed to determine the copula parameter underlying Gaussian copula.Second,these two methods are compared in computational efficiency,applicability,and capability of fitting data.Finally,four load-test datasets of load-displacement curves of piles are used to illustrate the proposed method.The results indicate that the proposed Gaussian copula-based method can not only characterize the correlation between geotechnical parameters,but also construct the joint probability distribution function of correlated non-normal geotechnical parameters in a more general way.It can serve as a general tool to construct the joint probability distribution of correlated geotechnical parameters based on incomplete data.The Gaussian copula using the Kendall method is superior to that using the Pearson method,which should be recommended for modelling and simulating the joint probability distribution of correlated geotechnical parameters.There exists a strong negative correlation between the two parameters underlying load-displacement curves.Neglecting such correlation will not capture the scatter in the measured load-displacement curves.These results substantially extend the application of the copula theory to multivariate simulation in geotechnical engineering. 展开更多
关键词 geotechnical parameters uncertainty analysis joint probability distribution function Gaussian copula Pearson corre-lation coefficient Kendall correlation coefficient load-displacement curve
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部