We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are gen...We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are generated.Especially, the first-and second-order rogue wave pairs are discussed in detail. It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case. In the second-order rogue wave solution, the distribution structures can be in triangle,quadrilateral and ring shapes by fixing appropriate values of the free parameters. In contrast to single-component systems, there are always more abundant rogue wave structures in multi-component ones. It is shown that the two higher-order nonlinear coefficients ρ_1 and ρ_2 make some skews of the rogue waves.展开更多
基金Supported by the Global Change Research Program of China under Grant No.2015CB953904National Natural Science Foundation of China under Grant Nos.11675054,11435005Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No.ZF1213
文摘We study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation, the higher-order rogue wave pairs of the coupled system are generated.Especially, the first-and second-order rogue wave pairs are discussed in detail. It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case. In the second-order rogue wave solution, the distribution structures can be in triangle,quadrilateral and ring shapes by fixing appropriate values of the free parameters. In contrast to single-component systems, there are always more abundant rogue wave structures in multi-component ones. It is shown that the two higher-order nonlinear coefficients ρ_1 and ρ_2 make some skews of the rogue waves.