-
题名基于GPU平台的联合迭代重构算法加速
- 1
-
-
作者
张广勇
卢晓伟
沈铂
张凯
储琪
赵开勇
-
机构
浪潮集团高效能服务器和存储技术国家重点实验室
中国科学院生物物理研究所生物大分子国家重点实验室
中国科学院计算技术研究所前瞻研究实验室
香港浸会大学计算机科学系
-
出处
《计算机科学》
CSCD
北大核心
2012年第5期310-312,F0003,共4页
-
文摘
电子断层三维重构技术(Electron Tomography,ET)是在纳米尺度下研究不具有全同性的细胞或大分子三维结构的重要方法。迭代重构法是ET中重构效果最好的方法,但是其性能较差,重构大尺寸图像时需要数天的时间甚至更长,使其应用受到限制。迭代重构法中经典的方法是代数重构法(Algebraic Reconstruction Technique,ART)和联合迭代重构法(Simultaneous Iterative Reconstruction Technique,SIRT),SIRT算法总是收敛的并且比ART重构的效果更好。利用CUDA语言设计和实现了基于Tesla C1060GPU平台上的并行SIRT重构算法,并利用存储器合并访问、常量存储器、共享存储器等优化技术对并行算法进行优化,优化后的SIRT并行算法在Tesla C1060GPU平台上的最大加速比是Intel i7 920CPU上的串行算法的47倍,并且重构的质量没有任何下降。
-
关键词
电子断层三维重构
联合迭代重构法
并行计算
GPU
CUDA
ATOM
-
Keywords
Electron tomography
SIRT
Parallel computing
GPU
CUDA
ATOM
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-