Based on a linear model, the present study provides analytical solutions for ideal triple forcing sources similar to sea surface temperature anomaly (SSTA) pat- terns associated with El Nino-Southern Oscillation (E...Based on a linear model, the present study provides analytical solutions for ideal triple forcing sources similar to sea surface temperature anomaly (SSTA) pat- terns associated with El Nino-Southern Oscillation (ENSO) Modoki in winter. The ideal triple pattern is composed of an equatorially symmetric heat source in the middle and equatoriaUy asymmetric cold forcing in the southeast and northwest. The equatorially symmetric heat source excites low-level cyclonic circulation anomalies associated with Rossby waves in both hemispheres, while the northwest- ern and southeastern equatorially asymmetric cold sources induce low-level anomalous anticyclones associated with Rossby waves in the hemisphere where the forcing source is located. Low-level zonal winds converge toward the heat sources associated with Kelvin and Rossby waves. Due to unequal forcing intensity in the northwest and southeast, atmospheric responses around the equatorially symmetric forcing become asymmetric, and low-level cyclonic circulation anomalies in the Southern Hemisphere become greater than those in the Northern Hemisphere. Ascending (descending) flows coincide with heat (cold) sources, resulting in a double-cell structure over the regions of forcing sources. Ideal triple patterns similar to SSTA patterns associated with La Nina Modoki produce opposite atmospheric responses. The theoretical atmospheric responses are consistent with observed circulation anomalies associated with ENSO Modoki. Therefore, the theoretical solutions can explain the dynamics responsible for atmospheric circulation anomalies associated with ENSO Modoki events.展开更多
Multi-objective optimization of urban bus network can help improve operation efficiency of the transit system and develop strategies for reducing urban traffic congestion in China. The work used cumulative prospect th...Multi-objective optimization of urban bus network can help improve operation efficiency of the transit system and develop strategies for reducing urban traffic congestion in China. The work used cumulative prospect theory, currently the most influential model for decision under uncertainty,to optimize urban bus network. To achieve the research objective, the work developed the theoretical framework of urban bus network optimization, including optimization principle, optimization objectives and constraints. Furthermore, optimization objectives could comprehensively reflect expectations of passengers and bus companies from the dimension of time, space and value. It is more scientific and reasonable compared with only one stakeholder or dimension alone in the previous studies. In addition,the technique for order preference by similarity to ideal solution(TOPSIS) was used to determine the positive and negative ideal alternative. The correlations between the optimization alternatives and the ideal alternatives were estimated by grey relational analysis simultaneously. The cumulative prospect theory(CPT) was used to determine the best alternative by comparing comprehensive prospect value of every alternative, accurately describing decision-making behavior compared with expected utility theory in actual life. Finally, Case of Xi'an showed that the method can better adjust the bus network,and the optimization solution is more reasonable to meet the actual needs.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB950400)the National Natural Science Foundation of China (Grant No. 41030961)the State Oceanic Administration of the People’s Republic of China
文摘Based on a linear model, the present study provides analytical solutions for ideal triple forcing sources similar to sea surface temperature anomaly (SSTA) pat- terns associated with El Nino-Southern Oscillation (ENSO) Modoki in winter. The ideal triple pattern is composed of an equatorially symmetric heat source in the middle and equatoriaUy asymmetric cold forcing in the southeast and northwest. The equatorially symmetric heat source excites low-level cyclonic circulation anomalies associated with Rossby waves in both hemispheres, while the northwest- ern and southeastern equatorially asymmetric cold sources induce low-level anomalous anticyclones associated with Rossby waves in the hemisphere where the forcing source is located. Low-level zonal winds converge toward the heat sources associated with Kelvin and Rossby waves. Due to unequal forcing intensity in the northwest and southeast, atmospheric responses around the equatorially symmetric forcing become asymmetric, and low-level cyclonic circulation anomalies in the Southern Hemisphere become greater than those in the Northern Hemisphere. Ascending (descending) flows coincide with heat (cold) sources, resulting in a double-cell structure over the regions of forcing sources. Ideal triple patterns similar to SSTA patterns associated with La Nina Modoki produce opposite atmospheric responses. The theoretical atmospheric responses are consistent with observed circulation anomalies associated with ENSO Modoki. Therefore, the theoretical solutions can explain the dynamics responsible for atmospheric circulation anomalies associated with ENSO Modoki events.
基金supported by China’s National Key Basic Research Program under Grant No.2012CB725400China’s National Natural Science Fund Key Research Program under Grant No.51338003+2 种基金Key Cultivating Plan of Xi’an University of Architecture and Technology for Discipline Construction under Grant No.XK201213Talents Training Fund Program of Xi’an University of Architecture and Technology for Cultivating Discipline Construction under Grant No.XK201101Youth Talent Fund of Xi’an University of Architecture and Technology under Grant No.DB01138
文摘Multi-objective optimization of urban bus network can help improve operation efficiency of the transit system and develop strategies for reducing urban traffic congestion in China. The work used cumulative prospect theory, currently the most influential model for decision under uncertainty,to optimize urban bus network. To achieve the research objective, the work developed the theoretical framework of urban bus network optimization, including optimization principle, optimization objectives and constraints. Furthermore, optimization objectives could comprehensively reflect expectations of passengers and bus companies from the dimension of time, space and value. It is more scientific and reasonable compared with only one stakeholder or dimension alone in the previous studies. In addition,the technique for order preference by similarity to ideal solution(TOPSIS) was used to determine the positive and negative ideal alternative. The correlations between the optimization alternatives and the ideal alternatives were estimated by grey relational analysis simultaneously. The cumulative prospect theory(CPT) was used to determine the best alternative by comparing comprehensive prospect value of every alternative, accurately describing decision-making behavior compared with expected utility theory in actual life. Finally, Case of Xi'an showed that the method can better adjust the bus network,and the optimization solution is more reasonable to meet the actual needs.