In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the ...In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.展开更多
Problems experienced during Floating Production, Storage and Offioading (FPSO) tandem offloading operations were investigated. The aim of this research was to improve the reliability of such systems, and it needed a...Problems experienced during Floating Production, Storage and Offioading (FPSO) tandem offloading operations were investigated. The aim of this research was to improve the reliability of such systems, and it needed a means to assess them. Time-domain simulation and analysis of offioading systems was performed using the multi-body mooring software ARIANE 7.0. Hydrodynamic interaction between the vessels was considered. The responses of the offioading system in different loading cases, different parameters of offioading hawsers and the effects of challenging environmental conditions were calculated. There was a focus on the problems of relative motion between the two bodies and its effects on the intensity of hawser forces. Minimum relative distance, maximum relative headings and maximum tension in the hawsers of offloading systems were obtained by time-domain analysis. The time-domain analysis was effective and comparative study can be used to optimize parameters of the system and extend operating limits.展开更多
基金Supported by the National Natural Science Foundation of China(21076202)
文摘In order to improve the energy efficiency, reduce the CO2 emission and decrease the cost, a cogenera- tion system for desalination water, heat and power production was studied in this paper. The superstructure of the cogeneration system consisted of a coal-based thermal power plant (TPP), a multi-stage flash desalination (MSF) module and reverse osmosis desalination (RO) module. For different demands of water, heat and power production, the corresponding optimal production structure was different. After reasonable simplification, the process model ot each unit was built. The economical model, including the unit investment, and operation and maintenance cost, was presented. By solving this non-linear programming (NLP) model, whose objective is to minimize the annual cost, an optimal cogeneration system can be obtained. Compared to separate production systems, the optimal system can reduce 16.1%-21.7% of the total annual cost. showing this design method was effective.
基金Supported by China National 111 Project foundation from the State Administration of Foreign Experts Affairs of Chinathe Ministry of Education of China under Grant No.B07019
文摘Problems experienced during Floating Production, Storage and Offioading (FPSO) tandem offloading operations were investigated. The aim of this research was to improve the reliability of such systems, and it needed a means to assess them. Time-domain simulation and analysis of offioading systems was performed using the multi-body mooring software ARIANE 7.0. Hydrodynamic interaction between the vessels was considered. The responses of the offioading system in different loading cases, different parameters of offioading hawsers and the effects of challenging environmental conditions were calculated. There was a focus on the problems of relative motion between the two bodies and its effects on the intensity of hawser forces. Minimum relative distance, maximum relative headings and maximum tension in the hawsers of offloading systems were obtained by time-domain analysis. The time-domain analysis was effective and comparative study can be used to optimize parameters of the system and extend operating limits.