期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于联邦平均的异常检测拜占庭容错算法
1
作者 王壮壮 杨佳鹏 +2 位作者 俎毓伟 陈丽芳 周旭 《应用科技》 CAS 2024年第2期127-134,共8页
传统联邦学习训练模型时假定所有参与方可信,但实际场景存在恶意参与方或恶意攻击模型,现有的联邦学习算法面对投毒攻击时,存在模型性能严重下降的问题。针对模型投毒问题,本文提出一种基于联邦平均(federated averaging,Fedavg)与异常... 传统联邦学习训练模型时假定所有参与方可信,但实际场景存在恶意参与方或恶意攻击模型,现有的联邦学习算法面对投毒攻击时,存在模型性能严重下降的问题。针对模型投毒问题,本文提出一种基于联邦平均(federated averaging,Fedavg)与异常检测的联邦检测算法——FedavgCof,该算法考虑到所有参与方之间的差异对比,在中心服务器和本地模型之间添加异常检测层,通过基于聚类的本地异常检测因子(cluster-based local outlier factor,COF)异常检测算法剔除影响模型性能的异常参数,提升模型鲁棒性。实验结果表明,虽然新型投毒方式攻击性更强,但是FedavgCof能够有效防御投毒攻击,降低模型性能损失,提高模型抗投毒攻击能力,相较于Median和模型清洗算法平均提升精度达到10%以上,大幅提升了模型的安全性。 展开更多
关键词 联邦学习 聚合方式 投毒攻击 异常检测 数据孤岛 拜占庭容错算法 联邦平均 中心服务器
下载PDF
基于层析分析改进的联邦平均算法 被引量:6
2
作者 罗长银 陈学斌 +1 位作者 马春地 张淑芬 《计算机科学》 CSCD 北大核心 2021年第8期32-40,共9页
联邦平均(Fedavg)算法采用权重更新来更新全局模型,该算法在权重更新时仅考虑每个客户端数据量的大小,未考虑数据质量对模型的影响。针对该问题,文中提出了基于层次分析改进的联邦平均算法,首次从数据质量的角度来处理多源数据。首先采... 联邦平均(Fedavg)算法采用权重更新来更新全局模型,该算法在权重更新时仅考虑每个客户端数据量的大小,未考虑数据质量对模型的影响。针对该问题,文中提出了基于层次分析改进的联邦平均算法,首次从数据质量的角度来处理多源数据。首先采用熵权法计算数据中各属性的重要度,并将其作为层次分析中准则层的数值,计算每个客户端数据的质量,然后结合客户端数据量的大小,重新计算全局模型中的权重。仿真实验的结果表明,对于中小型数据集而言,使用支持向量机训练的模型准确度最高,达到了85.7152%;对于大型数据集而言,采用随机森林训练的模型准确率最高,达到了91.9321%。与传统联邦平均方法相比,所提方法在中小数据集上准确率提升了3.5%,在大数据集上提升了1.3%,能够在提升模型准确率的同时提高数据与模型的安全性。 展开更多
关键词 联邦平均(Fedavg) 熵权法 层析分析 权重更新
下载PDF
EMFedAvg——基于EMD距离的联邦平均算法
3
作者 周旭华 丛悦 +1 位作者 李鉴明 仇计清 《广州大学学报(自然科学版)》 CAS 2020年第4期11-20,共10页
信息技术给人们生活带来便利的同时也会泄露个人隐私.联邦学习是一种可以保护数据隐私的机器学习技术,不同于现有的机器学习方法,联邦学习中数据不出参与方本地,通常面临着数据非独立同分布的问题(non-identically Independently Distri... 信息技术给人们生活带来便利的同时也会泄露个人隐私.联邦学习是一种可以保护数据隐私的机器学习技术,不同于现有的机器学习方法,联邦学习中数据不出参与方本地,通常面临着数据非独立同分布的问题(non-identically Independently Distributions, non-IID),因而现有的机器学习方法在联邦学习non-IID问题上效果大大降低.文章针对联邦学习中的non-IID问题,在联邦平均算法的基础上进行改进,对MNIST数据集进行non-IID划分并分发到各参与方,计算各参与方数据的EMD(Earth Mover’s Distance, EMD)距离,以四分位距为上界,主动去掉EMD距离过大的参与方以保证联邦整体的效果.实验结果表明,文章采用的方法比联邦平均算法提高了约5%的准确率,减少了联邦学习训练过程的通信开销,提高了整体效率,引入EMD距离还可以为衡量各参与方的贡献值提供度量依据. 展开更多
关键词 联邦学习 non-IID EMD距离 联邦平均算法
下载PDF
改进的联邦加权平均算法 被引量:4
4
作者 罗长银 王君宇 +2 位作者 陈学斌 马春地 张淑芬 《计算机应用》 CSCD 北大核心 2022年第4期1131-1136,共6页
针对基于层次分析改进的联邦平均算法在计算其数据质量时存在主观因素的影响,提出改进的联邦加权平均算法,从数据质量的角度来处理多源数据。首先,将训练样本划分为预训练样本与预测试样本;然后,使用初始全局模型在预训练数据上的精度... 针对基于层次分析改进的联邦平均算法在计算其数据质量时存在主观因素的影响,提出改进的联邦加权平均算法,从数据质量的角度来处理多源数据。首先,将训练样本划分为预训练样本与预测试样本;然后,使用初始全局模型在预训练数据上的精度作为该数据源的质量权重;最后,将质量权重引入到联邦平均算法中,重新进行全局模型中权重更新。仿真结果表明,在均等分割的数据集与非均等分割的数据集上,改进的联邦加权平均算法训练的模型与传统联邦平均算法训练的模型相比,准确率最高分别提升了1.59%和1.24%;改进的联邦加权平均算法训练的模型与传统整合多方数据再训练的模型相比,虽然准确率略有下降,但数据与模型的安全性有所提升。 展开更多
关键词 联邦学习 联邦平均 联邦加权平均算法 多源数据 数据质量
下载PDF
基于Bi-SRNN的联邦学习区域电力短期负荷预测模型 被引量:2
5
作者 袁郁 杨超 +2 位作者 郑伟铭 林俊鹏 陈新 《电网与清洁能源》 CSCD 北大核心 2023年第10期45-55,共11页
随着配电网终端需求多样化和清洁能源的大规模接入,对区域电力负荷的准确预测变得至关重要。在电力市场化改革背景下,客户端倾向于用电信息保存在本地以确保隐私安全。利用天气数据和历史负荷数据,提出面向区域客户端隐私保护的联邦学... 随着配电网终端需求多样化和清洁能源的大规模接入,对区域电力负荷的准确预测变得至关重要。在电力市场化改革背景下,客户端倾向于用电信息保存在本地以确保隐私安全。利用天气数据和历史负荷数据,提出面向区域客户端隐私保护的联邦学习双向叠加循环神经网络负荷预测框架。根据短期电力负荷长序列数据之间的强关联性建立基于双向叠加循环神经网络的负荷预测模型。利用联邦平均算法构建基于联邦学习的区域负荷预测框架,将多个利用不同区域客户端负荷数据训练得到的双向叠加循环神经网络的模型进行融合,反复迭代获得全局模型。采用某市96组实时区域电力负荷公开的数据集,对该模型在区域客户端不共享负荷数据条件下的训练效果进行测试,结果表明,所构建模型具有较低的训练耗时和较高的预测精度。 展开更多
关键词 双向叠加循环神经网络 负荷预测 联邦学习 联邦平均算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部