以夏秋季极端高温山林火灾扑救行动为研究对象,以分布式机器学习为理论基础对任务中气温及机动兵力的建模和预测进行研究。首先提出一种基于联邦平均算法(Federal Average Algorithm,FedAvg)的模型构建方法,从更贴近任务实际、更加精细...以夏秋季极端高温山林火灾扑救行动为研究对象,以分布式机器学习为理论基础对任务中气温及机动兵力的建模和预测进行研究。首先提出一种基于联邦平均算法(Federal Average Algorithm,FedAvg)的模型构建方法,从更贴近任务实际、更加精细的角度对各任务方向的最高气温及机动兵力数量进行定量预测;其次通过引接政府公共资源平台及作战数据库中多区域气温和机动兵力,在各数据客户端不互传数据的情况下,通过聚合不同客户端参数共同训练全局模型达到预测目的,为各数据源无法共享环境下分析数据、使用数据提供理论支撑。展开更多
作为一种分布式训练框架,联邦学习在无线通信领域有着广阔的应用前景,也面临着多方面的技术挑战,其中之一源于参与训练用户数据集的非独立同分布(Independent and identically distributed,IID)。不少文献提出了解决方法,以减轻户数据集...作为一种分布式训练框架,联邦学习在无线通信领域有着广阔的应用前景,也面临着多方面的技术挑战,其中之一源于参与训练用户数据集的非独立同分布(Independent and identically distributed,IID)。不少文献提出了解决方法,以减轻户数据集非IID造成的联邦学习性能损失。本文以平均信道增益预测、正交幅度调制信号的解调这两个无线任务以及两个图像分类任务为例,分析用户数据集非IID对联邦学习性能的影响,通过神经网络损失函数的可视化和对模型参数的偏移量进行分析,尝试解释非IID数据集对不同任务影响程度不同的原因。分析结果表明,用户数据集非IID未必导致联邦学习性能的下降。在不同数据集上通过联邦平均算法训练得到的模型参数偏移程度和损失函数形状有很大的差异,二者共同导致了不同任务受数据非IID影响程度的不同;在同一个回归问题中,数据集非IID是否影响联邦学习的性能与引起数据非IID的具体因素有关。展开更多
文摘传统联邦学习训练模型时假定所有参与方可信,但实际场景存在恶意参与方或恶意攻击模型,现有的联邦学习算法面对投毒攻击时,存在模型性能严重下降的问题。针对模型投毒问题,本文提出一种基于联邦平均(federated averaging,Fedavg)与异常检测的联邦检测算法——FedavgCof,该算法考虑到所有参与方之间的差异对比,在中心服务器和本地模型之间添加异常检测层,通过基于聚类的本地异常检测因子(cluster-based local outlier factor,COF)异常检测算法剔除影响模型性能的异常参数,提升模型鲁棒性。实验结果表明,虽然新型投毒方式攻击性更强,但是FedavgCof能够有效防御投毒攻击,降低模型性能损失,提高模型抗投毒攻击能力,相较于Median和模型清洗算法平均提升精度达到10%以上,大幅提升了模型的安全性。
文摘以夏秋季极端高温山林火灾扑救行动为研究对象,以分布式机器学习为理论基础对任务中气温及机动兵力的建模和预测进行研究。首先提出一种基于联邦平均算法(Federal Average Algorithm,FedAvg)的模型构建方法,从更贴近任务实际、更加精细的角度对各任务方向的最高气温及机动兵力数量进行定量预测;其次通过引接政府公共资源平台及作战数据库中多区域气温和机动兵力,在各数据客户端不互传数据的情况下,通过聚合不同客户端参数共同训练全局模型达到预测目的,为各数据源无法共享环境下分析数据、使用数据提供理论支撑。
文摘作为一种分布式训练框架,联邦学习在无线通信领域有着广阔的应用前景,也面临着多方面的技术挑战,其中之一源于参与训练用户数据集的非独立同分布(Independent and identically distributed,IID)。不少文献提出了解决方法,以减轻户数据集非IID造成的联邦学习性能损失。本文以平均信道增益预测、正交幅度调制信号的解调这两个无线任务以及两个图像分类任务为例,分析用户数据集非IID对联邦学习性能的影响,通过神经网络损失函数的可视化和对模型参数的偏移量进行分析,尝试解释非IID数据集对不同任务影响程度不同的原因。分析结果表明,用户数据集非IID未必导致联邦学习性能的下降。在不同数据集上通过联邦平均算法训练得到的模型参数偏移程度和损失函数形状有很大的差异,二者共同导致了不同任务受数据非IID影响程度的不同;在同一个回归问题中,数据集非IID是否影响联邦学习的性能与引起数据非IID的具体因素有关。