Poly(vinyl chloride)-g-poly(2-hydroxyethyl methacrylate) (PVC-g-PHE MA) copolymers were prepared by the aqueous suspension-swelling graft copolymer ization process.The grafting of HEMA on PVC was confirmed by the infr...Poly(vinyl chloride)-g-poly(2-hydroxyethyl methacrylate) (PVC-g-PHE MA) copolymers were prepared by the aqueous suspension-swelling graft copolymer ization process.The grafting of HEMA on PVC was confirmed by the infrared spect rum.The grafting degree increased with the increase of feeding mass fraction of HEMA,and a maximum grafting efficiency appeared at 10% mass fraction of HEMA i n feed.The grafting degree and efficiency increased as partially dehydrochlorin ated PVC was used.The intrinsic viscosity of graft copolymers increased slowly with the increase of the grafting degree of HEMA,and decreased at high grafting degrees.PVC-g-PHEMA copolymers exhibited a higher glass transition tempe rature (T g) in the first DSC run than that in the second run,and T g of graft copolymers increased as the grafting degree increased.展开更多
通过开环聚合(ROP)、DCC偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以...通过开环聚合(ROP)、DCC偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以溶剂挥发法制备胶束并进行载药实验。用激光粒度仪测定胶束粒径、粒径分布及zeta电位,用荧光光谱仪以芘荧光探针法测定临界胶束浓度,用紫外-可见分光光度计表征胶束载药量、包封率。结果表明,3种三嵌段共聚物均能形成稳定的载药胶束,其中具有星形结构的六臂的三嵌段共聚物具有最低的胶束粒径和临界胶束浓度、最高的载药量和包封率。因此,星形六臂的PCL-PEG-PHEMA可作为新的药物载体材料。展开更多
文摘Poly(vinyl chloride)-g-poly(2-hydroxyethyl methacrylate) (PVC-g-PHE MA) copolymers were prepared by the aqueous suspension-swelling graft copolymer ization process.The grafting of HEMA on PVC was confirmed by the infrared spect rum.The grafting degree increased with the increase of feeding mass fraction of HEMA,and a maximum grafting efficiency appeared at 10% mass fraction of HEMA i n feed.The grafting degree and efficiency increased as partially dehydrochlorin ated PVC was used.The intrinsic viscosity of graft copolymers increased slowly with the increase of the grafting degree of HEMA,and decreased at high grafting degrees.PVC-g-PHEMA copolymers exhibited a higher glass transition tempe rature (T g) in the first DSC run than that in the second run,and T g of graft copolymers increased as the grafting degree increased.
文摘通过开环聚合(ROP)、DCC偶合反应及原子转移自由基聚合(ATRP)合成3种不同臂数(线性、三臂和六臂)的聚己内酯-b-聚乙二醇-b-聚甲基丙烯酸(2-羟乙酯)(PCL-PEG-PHEMA)三嵌段共聚物。通过核磁氢谱(1 H NMR)红外谱图证明合成了设计产物。以溶剂挥发法制备胶束并进行载药实验。用激光粒度仪测定胶束粒径、粒径分布及zeta电位,用荧光光谱仪以芘荧光探针法测定临界胶束浓度,用紫外-可见分光光度计表征胶束载药量、包封率。结果表明,3种三嵌段共聚物均能形成稳定的载药胶束,其中具有星形结构的六臂的三嵌段共聚物具有最低的胶束粒径和临界胶束浓度、最高的载药量和包封率。因此,星形六臂的PCL-PEG-PHEMA可作为新的药物载体材料。