Objective: To provide a kinetic model(s) and reveal the mechanism of thymoquinone and Poloxin blocking an emerging anti-cancer target, human Polo-like kinase 1 (hPlkl) Polo-box domain (PBD). Methods: The bindi...Objective: To provide a kinetic model(s) and reveal the mechanism of thymoquinone and Poloxin blocking an emerging anti-cancer target, human Polo-like kinase 1 (hPlkl) Polo-box domain (PBD). Methods: The binding kinetics was determined by using a fluorescence polarization based assay. The putative mechanism was examined with a competition test. Results: Thymoquinone follows a one-step binding with an association rate constant (k1) of 6.635× 10^3 L.mol^-1 min^-1.Poloxin fit a two-step binding with a dissociation constant (Ki) of 118 μmol/L for the intermediate complex and its isomerization rate (k4) of 0.131 5 minJ to form an irreversible adduct. No significant dissociation was observed for either ligand up to 13 h. The inhibitors responded insignificantly to the presence of Michael donors as hPIkl-PBD competitors. Conclusion: Thymoquinone and Poloxin are slow-tight ligands to the hPlkl-PBD with kinetic models distinct from each other. Michael addition as the mechanism is excluded.展开更多
Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a tempe...Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a temperature range of 338-383 K in the presence of laboratory prepared Ni/Al_2O_3 as a catalyst and n-pentane as solvent.The influence of various parameters such as temperature,catalyst loading and initial concentration of IB was examined.A Langmuir-Hinshelwood kinetic model of IB dimerization was established and the parameters were estimated on the basis of the measured data.The feasibility of oligomerization of IB based on the reactive distillation was simulated in ASPEN PLUS using the kinetics developed.The simulation results showed that the catalyst of Ni/Al_2O_3 had higher selectivity to diisobutene(DIB) and slightly lower conversion of IB than ion exchange resin in the absence of polar substances.展开更多
基金a co-sponsored graduate research project by China Pharmaceutical University and Shanghai Medicilon Inc
文摘Objective: To provide a kinetic model(s) and reveal the mechanism of thymoquinone and Poloxin blocking an emerging anti-cancer target, human Polo-like kinase 1 (hPlkl) Polo-box domain (PBD). Methods: The binding kinetics was determined by using a fluorescence polarization based assay. The putative mechanism was examined with a competition test. Results: Thymoquinone follows a one-step binding with an association rate constant (k1) of 6.635× 10^3 L.mol^-1 min^-1.Poloxin fit a two-step binding with a dissociation constant (Ki) of 118 μmol/L for the intermediate complex and its isomerization rate (k4) of 0.131 5 minJ to form an irreversible adduct. No significant dissociation was observed for either ligand up to 13 h. The inhibitors responded insignificantly to the presence of Michael donors as hPIkl-PBD competitors. Conclusion: Thymoquinone and Poloxin are slow-tight ligands to the hPlkl-PBD with kinetic models distinct from each other. Michael addition as the mechanism is excluded.
基金Supported by the State key Development Program for Basic Research of China(2012CB720502)the National High Technology Research and Development(2012AA040306)+1 种基金the National Natural Science Foundation of China(21076074)the Shanghai Pujiang Talents Program(10PJ1402400)
文摘Isooctane is a promising gasoline additive that could be produced by dimerization of isobutene(IB) with subsequent hydrogenation.In this work,the dimerization of IB has been carried out in a batch reactor over a temperature range of 338-383 K in the presence of laboratory prepared Ni/Al_2O_3 as a catalyst and n-pentane as solvent.The influence of various parameters such as temperature,catalyst loading and initial concentration of IB was examined.A Langmuir-Hinshelwood kinetic model of IB dimerization was established and the parameters were estimated on the basis of the measured data.The feasibility of oligomerization of IB based on the reactive distillation was simulated in ASPEN PLUS using the kinetics developed.The simulation results showed that the catalyst of Ni/Al_2O_3 had higher selectivity to diisobutene(DIB) and slightly lower conversion of IB than ion exchange resin in the absence of polar substances.