Graft copolymerization is one of the most attractive methods to modify natural polymers. In this study, graft copolymerization of acylic acid onto chitosan in aqueous media by ceric ammonium nitrate was investigated. ...Graft copolymerization is one of the most attractive methods to modify natural polymers. In this study, graft copolymerization of acylic acid onto chitosan in aqueous media by ceric ammonium nitrate was investigated. The graft copolymerization reaction was carried out in a three necked flask maintained at 70+/-0.05 ℃ under nitrogen atmosphere in a homogeneous aqueous phase (containing a small potion of acetic acid) by using ceric ammonium nitrate as an initiator. Evidence of grafting was obtained. The synthetic conditions were systematically optimized through studying the influential factors on grafting. The effectiveness of each individual factor was investigated by calculating and monitoring the variations of the grafting parameters [like monomer conversation Cm, grafting efficiency (Ge) and viscosity]. Under optimum conditions monomer conversion of 100.5% and graft efficiency of 94% were obtained, at temperature of 70℃. Flocculating ability of the copolymerization product of chitosan was studied by using Kaolin suspension as the flocculating object. And the application of the product was applied in Huayue dyeing plant. The results indicate that the higher the viscosity is, the better the flocculating ability of the copolymerization product of chitosan will be. The flocculating percentage reaches 96.0%, when the concentration of the product is only 1.0 mg/L and pH fixed at 7.0. Suitable separating mixtures for the grafted copolymer were chosen and the investigation of flocculation ability of the grafted copolymer was carried out with the aim of developing a good flocculant for wastewater treatment. A test of treating dyeing wastewater with the grafted copolymer was carried out and showed that grafting of Acrylic Acid with chitosan has a high COD removal rate 75% to the dyeing wastewater when the concentration is only 6.0 mg/L.展开更多
Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by inte...Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by integration of the surface-initiated atom transfer radical polymerization (SI-ATRP) and continuous injection method. Three types of copolymer gradients were prepared: (1) a uniform P(PEGMA) layer was block copolymerized with a gradient PNIPAAm layer (PP1); (2) a gradient P(PEGMA) layer was block copolymerized with a uniform PNIPAAm layer (PP2); and (3) a gradient P(PEGMA) layer was inversely block copolymerized with a gradient PNIPAAm layer (PP3). The as-prepared gradients were characterized by ellipsometry, water contact angle and atomic force microscopy (AFM) to determine their alterations in thickness, surface wettability and morphology, confirming the gradient structures. In vitro culture of HepG2 cells was implemented on the gradient surfaces, revealing that the cells could adhere at 37 ℃ and be detached at 20 ℃. Introduction of the PEG chains as an underlying layer on the PNIPAAm grafting surfaces resulted in faster cell detachment compared with the PNIPAAm grafting surface.展开更多
文摘Graft copolymerization is one of the most attractive methods to modify natural polymers. In this study, graft copolymerization of acylic acid onto chitosan in aqueous media by ceric ammonium nitrate was investigated. The graft copolymerization reaction was carried out in a three necked flask maintained at 70+/-0.05 ℃ under nitrogen atmosphere in a homogeneous aqueous phase (containing a small potion of acetic acid) by using ceric ammonium nitrate as an initiator. Evidence of grafting was obtained. The synthetic conditions were systematically optimized through studying the influential factors on grafting. The effectiveness of each individual factor was investigated by calculating and monitoring the variations of the grafting parameters [like monomer conversation Cm, grafting efficiency (Ge) and viscosity]. Under optimum conditions monomer conversion of 100.5% and graft efficiency of 94% were obtained, at temperature of 70℃. Flocculating ability of the copolymerization product of chitosan was studied by using Kaolin suspension as the flocculating object. And the application of the product was applied in Huayue dyeing plant. The results indicate that the higher the viscosity is, the better the flocculating ability of the copolymerization product of chitosan will be. The flocculating percentage reaches 96.0%, when the concentration of the product is only 1.0 mg/L and pH fixed at 7.0. Suitable separating mixtures for the grafted copolymer were chosen and the investigation of flocculation ability of the grafted copolymer was carried out with the aim of developing a good flocculant for wastewater treatment. A test of treating dyeing wastewater with the grafted copolymer was carried out and showed that grafting of Acrylic Acid with chitosan has a high COD removal rate 75% to the dyeing wastewater when the concentration is only 6.0 mg/L.
基金supported by the National Natural Science Foundation of China (20934003,20774084)the National Basic Research Program of China (973Program,2005CB623902)
文摘Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by integration of the surface-initiated atom transfer radical polymerization (SI-ATRP) and continuous injection method. Three types of copolymer gradients were prepared: (1) a uniform P(PEGMA) layer was block copolymerized with a gradient PNIPAAm layer (PP1); (2) a gradient P(PEGMA) layer was block copolymerized with a uniform PNIPAAm layer (PP2); and (3) a gradient P(PEGMA) layer was inversely block copolymerized with a gradient PNIPAAm layer (PP3). The as-prepared gradients were characterized by ellipsometry, water contact angle and atomic force microscopy (AFM) to determine their alterations in thickness, surface wettability and morphology, confirming the gradient structures. In vitro culture of HepG2 cells was implemented on the gradient surfaces, revealing that the cells could adhere at 37 ℃ and be detached at 20 ℃. Introduction of the PEG chains as an underlying layer on the PNIPAAm grafting surfaces resulted in faster cell detachment compared with the PNIPAAm grafting surface.